Publications by authors named "Vinod H Jadhav"

A bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA) was designed and prepared as a multifunctional organic promoter for nucleophilic fluorinations with CsF. By formation of a CsF/BACCA complex, BACCA could release a significantly active and selective fluoride source for SN2 fluorination reactions. The origin of the promoting effects of BACCA was studied by quantum chemical methods.

View Article and Find Full Text PDF

Hexaethylene glycol bis(3-hexaethylene glycol imidazolium) dimesylate ionic liquid (hexaEG-DHIM) was designed and prepared as a highly efficient promoter for the nucleophilic hydroxylation of alkyl halides to the corresponding alcohol products in neat water media. It was observed that hexaEG-DHIM promoter enhanced the nucleophilicity of water significantly in the reaction. In addition, the hexaEG-DHIM could be reused several times without loss of activity.

View Article and Find Full Text PDF

We introduce the high-throughput synthesis of various (18)F-labeled peptide tracers by a straightforward (18)F-labeling protocol based on a chemo-orthogonal strain-promoted alkyne azide cycloaddition (SPAAC) using aza-dibenzocyclootyne-substituted peptides as precursors with (18)F-azide synthon to develop peptide based positron emission tomography (PET) molecular imaging probes. The SPAAC reaction and subsequent chemo-orthogonal purification reaction with azide resin proceeded quickly and selectively under physiologically friendly reaction conditions (i.e.

View Article and Find Full Text PDF

Herein, we report the promising use of n-oligoethylene glycols (oligoEGs) as mutifunctional promoters for nucleophilic-substitution reactions employing alkali metal salts. Among the various oligoEGs tested, pentaethylene glycol (pentaEG) had the most efficient catalytic activity. In particular, when compared with other nucleophiles examined, a fluorine nucleophile generated from CsF was significantly activated by the pentaEG promoter.

View Article and Find Full Text PDF

Hexaethylene glycol substituted imidazolium based ionic liquids (hexaEGILs) were designed and prepared well-tailored to a specific organic reaction using alkali-metal fluorides (MFs) as multifunctional organic catalysts. These hexaEGIL catalysts could significantly enhance the reactivity of MF, even KF. Furthermore, the hexaEGIL systems showed tremendous efficiency in the nucleophilic fluorination of base-sensitive substrates.

View Article and Find Full Text PDF

Polymer-supported pentaethylene glycols (PSpentaEG) as promising catalysts for nucleophilic fluorination with alkali metal fluoride (MF) could significantly enhance the nucleophilicity of MF and provide simple purification and recycling in the reaction. Furthermore, by their synergistic effect, the combination of PSpentaEG and a tert-alcohol media system showed tremendous efficiency in the fluorination of base-sensitive substrates such as sec-alkyl halide.

View Article and Find Full Text PDF

A new series of 2,3-diaryl-4/5-hydroxy-cyclopent-2-en-1-one analogues replacing the cis double bond of combretastatin A-4 (CA-4) by 4/5-hydroxy cyclopentenone moieties was designed and synthesized. The analogues displayed potent cytotoxic activity (IC50<1 microg/mL) against a panel of human cancer cell lines and endothelial cells. The most potent analogues 11 and 42 belonging to the 5-hydroxy cyclopentenone class were further evaluated for their mechanism of action.

View Article and Find Full Text PDF

The enantiomers of 5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one, a novel anticancer agent, were separated by derivatisation with caronaldehyde, separation of the resulting diastereoisomers of the corresponding esters by silica gel column chromatography and regeneration of alcohols (S)-5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one and (R)-5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-one under aqueous conditions. The absolute configuration of the enantiomers was determined by 1H NMR studies of the corresponding Mosher esters. Alternatively, the enantiomers were separated by preparative HPLC to collect the (S)- and (R)-5-hydroxy-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-cyclopent-2-en-1-ones with high purity which was comparable with that obtained by the chemical method.

View Article and Find Full Text PDF