Publications by authors named "Vinod C"

The growing interest in low-temperature direct ammonia fuel cells (DAFCs) arises from the utilization of a carbon-neutral ammonia source; however, DAFCs encounter significant electrode overpotentials due to the substantial energy barrier of the *NH to *NH dehydrogenation, compounded by the facile deactivation by *N on the Pt surface. In this work, a unique catalyst, PtIr@AlOOH/NGr i.e.

View Article and Find Full Text PDF

In recent years, the field of analytical chemistry has witnessed a notable shift towards the adoption of greener chromatographic methods, aiming to minimize the environmental impact. An effective strategy involves substituting conventional harmful organic solvents with environmentally friendly alternatives, reducing the use of hazardous chemicals that contribute to environmental concerns. However, separating drug substances without the use of buffers and organic solvents presence is a big challenge.

View Article and Find Full Text PDF

We demonstrate a switchable electrocatalysis mechanism modulated by hydrogen bonding interactions in ligand geometries. By manipulating these geometries, specific electrochemical processes at a single catalytic site can be selectively and precisely activated or deactivated. The α geometry enhances dioxygen electroreduction (ORR) while inhibiting protium redox processes, with the opposite effect seen in the β geometry.

View Article and Find Full Text PDF

The rising demand for portable energy conversion devices has spurred the advancement of direct liquid fuel cells (DLFCs) employing fuels such as alcohol, ammonia, hydrazine, and vitamin C. In these devices, various precious metal platforms have been explored to increase the de-electronation kinetics and reduce catalyst poisoning, but with substantial cost implications. We demonstrate the crucial role of ligands in non-precious organometallic complexes in influencing the de-electronation kinetics of fuel molecules through a unique substrate-ligand synergistic interaction.

View Article and Find Full Text PDF

Electrocatalysts containing a Ni/NiO/N-doped graphene interface have been synthesised using the ligand-assisted chemical vapor deposition technique. NiO nanoparticles were used as the substrate to grow N-doped graphene by decomposing vapours of benzene and N-containing ligands. The method was demonstrated with two nitrogen-containing ligands, namely dipyrazino[2,3-:2',3'-]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (L) and melamine (M).

View Article and Find Full Text PDF

The prevailing view about molecular catalysts is that the central metal ion is responsible for the reaction mechanism and selectivity, whereas the ligands mainly affect the reaction kinetics. Here, we question this paradigm and show that ligands have a dramatic influence on the selectivity of the product. We show how even a seemingly small change in ligand isomerization sharply alters the selectivity of the well-researched oxygen reduction reaction (ORR) Co phthalocyanine catalyst from an indirect 2e to a direct 4e pathway.

View Article and Find Full Text PDF

There is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units.

View Article and Find Full Text PDF

Contrary to conventional beliefs, we show how a functional ligand that does not exhibit any redox activity elevates the charge storage capability of an electric double layer a proton charge assembly. Compared to an unsubstituted ligand, a non-redox active carboxy ligand demonstrated nearly a 4-fold increase in charge storage, impressive capacitive retention even at a rate of 900C, and approximately a 2-fold decrease in leakage currents with an enhancement in energy density up to approximately 70% a non-electrochemical route of proton charge assembly. Generalizability of these findings is presented with various non-redox active functional units that can undergo proton charge assembly in the ligand.

View Article and Find Full Text PDF

Improving the electronic conductivity and the structural robustness of covalent organic frameworks (COFs) is paramount. Here, we covalently cross-link a 2D COF with polypyrrole (Ppy) chains to form a quasi-3D COF. The 3D COF shows well-defined reflections in the SAED patterns distinctly indexed to its modeled crystal structure.

View Article and Find Full Text PDF

In this work, atomic cobalt (Co) incorporation into the PdGe intermetallic lattice facilitates generation of a thin layer of CoO over Co-substituted PdGe, with Co in the CoO surface layer functioning as single metal sites. Hence the catalyst has been titled Co-CoO-PdGe. High-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy confirm the existence of CoO, with some of the Co bonded to Ge by substitution of Pd sites in the PdGe lattice.

View Article and Find Full Text PDF

A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF's structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogeneous distribution of nano- to sub-micron-sized zirconium clusters in the COF.

View Article and Find Full Text PDF

The rational design of noble metal-free electrocatalysts holds great promise for cost-effective green hydrogen generation through water electrolysis. In this context, here, the development of a superhydrophilic bifunctional electrocatalyst that facilitates both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline conditions is demonstrated. This is achieved through the in situ growth of hierarchical NiMoO @CoMoO ·xH O nanostructure on nickel foam (NF) via a two-step hydrothermal synthesis method.

View Article and Find Full Text PDF

The essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with β-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g at 1 A g while maintaining high performance metrics even at a rate as high as 50 A g.

View Article and Find Full Text PDF

We show that the ability of the ligand to reorganize the electric double layer (EDL) often dominates the electrocatalysis contrary to their inductive effect in the spectrochemical series, leading to counterintuitive electrocatalysis. With water oxidation and chlorine evolution as the probe reactions, the same catalytic entity with carboxy functionalized ligand exhibited surprisingly higher electrochemical activity in comparison to the aggressively electron-withdrawing nitro functionalized ligands, which is contrary to their actual location in the spectrochemical series. Spectroscopic and electrochemical analyses suggest the enrichment of catalytically active species in the carboxy substituted ligand via proton charge assembly in the EDL that in turn enhances the kinetics of the overall electrochemical process.

View Article and Find Full Text PDF

We present surface reconstruction-induced C-C coupling whereby CO is converted into ethylene. The wurtzite phase of CuGaS undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO to ethylene (C H ). Upon illumination, the catalyst efficiently converts CO to C H with 75.

View Article and Find Full Text PDF

Obtaining multi-carbon products via CO  photoreduction is a major catalytic challenge involving multielectron-mediated CC bond formation. Complex design of multicomponent interfaces that are exploited to achieve this chemical transformation, often leads to untraceable deleterious changes in the interfacial chemical environment affecting CO  conversion efficiency and product selectivity. Alternatively, robust metal centers having asymmetric charge distribution can effectuate CC coupling reaction through the stabilization of intermediates, for desired product selectivity.

View Article and Find Full Text PDF

Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases.

View Article and Find Full Text PDF

Cobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron ( FeO, CoO, CoFeO and CoFeO), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical).

View Article and Find Full Text PDF

We have investigated the role of ligand isomerism in modulating the mechanisms and kinetics associated with charge/discharge chemistry of an aqueous metal-air battery. The dominant electron-withdrawing inductive effect (-I effect) and the diminished electron-withdrawing resonance effect (-R effect) in the α-NO isomer noticeably diminishes the rate of oxygen reduction (ORR) and oxygen evolution reactions (OER) on the catalytic Co-center. In their β-counterpart, the cumulative -I and -R effects noticeably enhance the OER and ORR kinetics on the same catalytic Co-center.

View Article and Find Full Text PDF

Direct hydroxylation of benzene towards phenol with high conversion and selectivity remains a great challenge. We report herein an efficient La CuO perovskite catalyst for one-step oxidation of benzene using hydrogen peroxide under mild conditions. The catalyst was characterized using XRD, TEM, XPS, TG-DTA, and other advanced techniques.

View Article and Find Full Text PDF

NiFe layered double hydroxide (NiFe LDH) grown in the presence of MoS (rich in 1T phase) shows exceptional performance metrics for alkaline oxygen evolution reaction (OER) in this class of composites. The as-prepared NiFe LDH/MoS composite (abbreviated as MNF) exhibits a low overpotential (η) of 190 mV; a low Tafel slope of 31 mV dec; and more importantly, a high stability in its performance manifested by the delivery of current output for 45 h. It is important to note that this could be achieved with an exceedingly low loading of 0.

View Article and Find Full Text PDF

The well-known limitation of alkaline fuel cells is the slack kinetics of the cathodic half-cell reaction, the oxygen reduction reaction (ORR). Platinum, being the most active ORR catalyst, is still facing challenges due to its corrosive nature and sluggish kinetics. Many novel approaches for substituting Pt have been reported, which suffer from stability issues even after mighty modifications.

View Article and Find Full Text PDF

The discovery of novel materials for industrial-standard hydrogen production is the present need considering the global energy infrastructure. A novel electrocatalyst, Pt Ge, which is engineered with a desired crystallographic facet (202), accelerates hydrogen production by water electrolysis, and records industrially desired operational stability compared to the commercial catalyst platinum is introduced. Pt Ge-(202) exhibits low overpotential of 21.

View Article and Find Full Text PDF

Electrochemical reduction of CO into valuable fuels and chemicals is a promising route of replacing fossil fuels by reducing CO emissions and minimizing its adverse effects on the climate. Tremendous efforts have been carried out for designing efficient catalyst materials to selectively produce the desired product in high yield from CO by the electrochemical process. In this work, a strategy is reported to enhance the electrochemical CO reduction reaction (ECORR) by constructing an interface between a metal-based alloy (PdIn) nanoparticle and an oxide (InO), which was synthesized by a facile solution method.

View Article and Find Full Text PDF