Expression of the genome requires RNA polymerase II (RNAPII) to transcribe across many natural and unnatural barriers, and this transcription across barriers is facilitated by protein complexes called elongation factors (EFs). Genetic studies in Saccharomyces cerevisiae yeast suggest that multiple EFs collaborate to assist RNAPII in completing the transcription of genes, but the molecular mechanisms of how they cooperate to promote elongation are not well understood. The Ccr4-Not complex participates in multiple steps of mRNA metabolism and has recently been shown to be an EF.
View Article and Find Full Text PDFGene expression relies on the balance between mRNA synthesis in the nucleus and decay in the cytoplasm, processes once thought to be separate. We now know that transcription and decay rates are coordinated, but the factors or molecular mechanisms are unclear. The Ccr4-Not complex regulates multiple stages of gene expression, from mRNA synthesis to protein destruction.
View Article and Find Full Text PDFRNA editing in the sleeping sickness parasite Trypanosoma brucei remodels mitochondrial transcripts by the addition and deletion of uridylates as specified by guide RNAs. Editing is catalyzed by at least three distinct approximately 20S multiprotein editosomes, all of which contain KREPB4, a protein with RNase III and Pumilio motifs. RNAi repression of KREPB4 expression in procyclic forms (PFs) strongly inhibited growth and in vivo RNA editing, greatly diminished the abundance of 20S editosomes, reduced cellular levels of editosome proteins, and generated approximately 5-10S editosome subcomplexes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2003
Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins.
View Article and Find Full Text PDF