Tuberculosis (TB) remains a global health threat, necessitating innovative strategies for control and prevention. This comprehensive review explores the Lysine Exporter (LysE) gene, unveiling its multifaceted roles and potential uses in controlling and preventing tuberculosis (TB). As a pivotal player in eliminating excess L-lysine and L-arginine, LysE contributes to the survival and virulence of .
View Article and Find Full Text PDFBackground: Tuberculosis (TB) is among the deadliest diseases and a significant cause of illnessacross the globe. Several studies on mycobacterial proteins, such as proteases and transporters that are essential for survival and pathogenesis have aimed to develop an efficient anti-tubercular agent. In mycobacterium, lysine exporter (LysE) is an amino acid transporter and a probable target for an anti-tubercular agent as it is responsible for bacterial growth inhibition and is also absent in the widely used Bacillus Calmette-Guérin (BCG) vaccine.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2014
Human primase synthesizes RNA primers and transfers them to the active site of Pol α with subsequent extension with dNTPs. Human primase is a heterodimer of two subunits: a small catalytic subunit (p49) and a large subunit (p58). The structural details of the initiation and elongation steps of primer synthesis, as well as primer length counting, are not known.
View Article and Find Full Text PDFDNA polymerases cannot synthesize DNA without a primer, and DNA primase is the only specialized enzyme capable of de novo synthesis of short RNA primers. In eukaryotes, primase functions within a heterotetrameric complex in concert with a tightly bound DNA polymerase α (Pol α). In humans, the Pol α part is comprised of a catalytic subunit (p180) and an accessory subunit B (p70), and the primase part consists of a small catalytic subunit (p49) and a large essential subunit (p58).
View Article and Find Full Text PDFThe Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, the A-site and the B-site.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2009
Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-beta receptor promoter (TbetaR-II) DNA.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2007
The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase superfamily and catalyzes the conversion of amides to the corresponding carboxylic acids and ammonia. It shows both amide-hydrolysis and acyl-transfer activities and also exhibits stereoselectivity for some enantiomeric substrates, thus making it a potentially important industrial catalyst. The crystal structure of G.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2006
The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps.
View Article and Find Full Text PDF