In liver, like in other multicellular systems, the establishment of cellular contacts is a prerequisite for normal functioning. In particular, well-defined cell junctions between hepatocytes, including adherens junctions, desmosomes, tight junctions, and gap junctions, are known to play key roles in the performance of liver-specific functionality. In a first part of this review article, we summarize the current knowledge concerning cell junctions and their roles in hepatic (patho)physiology.
View Article and Find Full Text PDFHistone deacetylase inhibitors are nowadays considered as promising anti-cancer drugs, as they interfere with several key steps of tumor development and progression, both in vitro and in vivo. Less attention has been paid to their impact on cell junctions. Nevertheless, cell junctions are gatekeepers in the management of tissue homeostasis, and their aberrant expression and functioning is observed in all aspects of cancer biology.
View Article and Find Full Text PDFIsolated hepatocytes are a physiologically relevant in vitro model exhibiting intact subcellular organelles, xenobiotic transport, and integrated phase I and phase II biotransformation. They represent the "gold standard" for investigating xenobiotic biotransformation and metabolic bioactivation. When used in suspension, they provide an easy-to-handle and relatively cheap in vitro system that can be used for up to 4 h.
View Article and Find Full Text PDFMimicking the in vivo microenvironment is one of the current strategies to maintain liver-specific functionality in primary cultured hepatocytes for long periods. Freshly isolated hepatocytes entrapped in collagen gel type I (collagen gel immobilization culture) or sandwiched between two layers of hydrated collagen type I (collagen gel sandwich culture) are known to display liver-specific functions (e.g.
View Article and Find Full Text PDFPrimary cultures of hepatocytes are useful tools for both short- and long-term pharmacotoxicological research. Under conventional conditions, isolated hepatocytes form a monolayer and survive for about 1 wk but lose some liver-specific functions, including xenobiotic biotransformation. In comparison with the conventional monolayer culture model, cocultures with rat liver epithelial cells (RLECs) have an extended lifespan and better maintain their drug-metabolizing capacity, owing to the presence of cell-cell interactions.
View Article and Find Full Text PDFIn vitro models, based on liver cells or tissues, are indispensable in the early preclinical phase of drug development. An important breakthrough in establishing cell models has been the successful high-yield preparation of intact hepatocytes. In this chapter, the practical aspects of the two-step collagenase perfusion method, modified from the original procedure of Seglen, are outlined.
View Article and Find Full Text PDFThe effects of histone deacetylase inhibitor Trichostatin A (TSA) on connexin (Cx) expression and gap junctional intercellular communication (GJIC) were investigated in primary cultures of adult rat hepatocytes. GJIC was monitored by using the scrape-loading/dye transfer method. Immunoblotting and immunocytochemistry were used to investigate Cx protein levels and localization.
View Article and Find Full Text PDFMimicking the in vivo microenvironment is one of the current strategies to maintain liver-specific functionality in primary cultured hepatocytes for long periods. Freshly isolated hepatocytes entrapped in collagen gel type I (collagen gel immobilization culture) or sandwiched between two layers of hydrated collagen type I (collagen gel sandwich culture) are known to display liver-specific functions (e.g.
View Article and Find Full Text PDFDirect communication between cells, mediated by gap junctions, is nowadays considered as an indispensable mechanism in the maintenance of cellular homeostasis. In fact, gap junctional intercellular communication is actively involved in virtually all aspects of the cellular life cycle, ranging from cell growth to cell death. For a long time, it was believed that this was merely a result of the capacity of gap junctions to control the direct intercellular exchange of essential cellular messengers.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors target key steps of tumor development: They inhibit proliferation, induce differentiation and/or apoptosis, and exhibit potent antimetastatic and antiangiogenic properties in transformed cells in vitro and in vivo. Preliminary studies in animal models have revealed a relatively high tumor selectivity of HDAC inhibitors, strenghtening their promising potential in cancer chemotherapy. Until now, preclinical in vitro research has almost exclusively been performed in cancer cell lines and oncogene-transformed cells.
View Article and Find Full Text PDF