For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.
View Article and Find Full Text PDFMembrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis.
View Article and Find Full Text PDFIn the present study, bacterial nanocellulose/graphene oxide nano-biocomposites (BNC-GO-NBCs) were fabricated by Komagataeibacter saccharivorans NUWB1 using an in-situ method involving three time-dependent approaches. Physicochemical studies showed that the chosen dried BNC-GO-NBC possessed a three-dimensional interconnected porous structure of BNC with GO layers embedded within the BNC fibrils. BNC-GO-NBC had a crystallinity index of 74.
View Article and Find Full Text PDFPetroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs.
View Article and Find Full Text PDFIn the present study, the efficiency of four different strains of and their biosurfactants in the bioremediation process were investigated. The strains were found to be capable of metabolizing a wide range of hydrocarbons (HCs) with preference for high molecular weight aliphatic (ALP) over aromatic (ARO) compounds. After treating with individual bacteria and 11 different consortia, the residual crude oils were quantified and qualitatively analyzed.
View Article and Find Full Text PDFRecovery and recycle of wastewater are essential because of the need of huge quantities of water everywhere in this world. Presence of heavy metals in wastewater such as iron (Fe), molybdenum (Mo), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), vanadium (V), cobalt (Co), tungsten (W), chromium (Cr), arsenic (As), silver (Ag), antimony (Sb), cadmium (Cd), mercury (Hg), lead (Pd), uranium (U), etc is the serious environmental issues and risk for human and animal health. Adsorbents are simple and low-cost methods to treat the pollutants and heavy metals of wastewater.
View Article and Find Full Text PDFβ-lactamase inhibitors are potent synergistic drugs to deteriorate the multidrug-resistant bacteria. Here, we report the β-lactamase inhibitory ability of kalafungin isolated from a marine sponge derived Streptomyces sp. SBRK1.
View Article and Find Full Text PDFContamination of agricultural soil with cadmium (Cd) has become a global concern because of its adverse effects on ecohealth and food safety. Soil amendment with biochar has become one of the phytotechnologies to reduce soil metal phyto-availability and its potential risks along the food chain. Biochar, derived from cocoa pod, was evaluated in soil Cd fractions (exchangeable, reducible, oxidizable, and residual) by modified Commission of the European Communities Bureau of Reference sequential extraction and its efficacy to ameliorate Cd toxicity to soil enzymes and leaf bioactive compounds.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2021
This study is focused on polymeric coatings on fly ash concrete submerged under seawater. The specimens were casted and coated with acrylic resin and epoxy resin of three layers each. The mechanical, durability, and microstructural properties of coated and uncoated fly ash concrete specimen were studied as pre- and post-exposed in seawater.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2020
Sulfate attack on concrete structures is a major durability concern wherein concrete interacts with marine water, swamp water, groundwater, sewage water, freshwater, etc. In this study, the supplementary cementitious materials such as fly ash (FA) and nanoparticles are together incorporated into conventional concrete aiming to enhance the resistance of concrete against the penetration of sulfates. The present work is focused to understand the degradation in FA concrete modified with nanoparticles by surface sulfate attack.
View Article and Find Full Text PDFCadmium contamination of agricultural soils is a serious problem due to its toxic effects on health and yield of crop plants. This study investigates the potential of low-dose nano-TiO as soil nanoremediation on Cd toxicity in cowpea plants. To achieve this goal, cowpea seeds were germinated on Cd-spiked soils at 10 mg/kg for 14 days and later augmented with 100 mg nTiO/kg (nTiO-50 nm and bTiO-68 nm, respectively).
View Article and Find Full Text PDFThe study was conducted to investigate the effects of foliar-intervention of nano-TiO on Cd toxicity in cowpea plants. Cowpea plants were exposed to Cd toxicity at 10 mg/kg soil for 21 days and afterwards, subjected to six episodes of foliar application of nano-TiO intervention. Results showed that foliar-applied nano-TiO significantly promoted chlorophyll b and total chlorophyll contents after Cd stress as compared to Cd-stressed plants without the intervention.
View Article and Find Full Text PDFJ Basic Microbiol
March 2020
The growth of technology and requirements globally for various commodities has brought about new challenges. Biofilms are aggregations of microbial cells, which contaminate and spoil industrial components and environments. These microbial cells with extracellular polymeric substances colonize living and nonliving surfaces and pose a serious problem for all industries, affecting their processes, leading to a reduction of product quality and economic loss.
View Article and Find Full Text PDFNonstructural protein 5B (NS5B), the RNA-dependent RNA polymerase of Hepatitis C Virus (HCV), plays a key role in viral amplification and is an attractive and most explored target for discovery of new therapeutic agents for Hepatitis C. Though safe and effective, NS5B inhibitors were launched in 2013 (Sovaldi) and 2014 (Harvoni, Viekira Pak), the high price tags of these medications limit their use among poor people in developing countries. Hence, still there exists a need for cost-effective and short duration anti-HCV agents especially those targeting niche patient population who were non-respondent to earlier therapies or with comorbid conditions.
View Article and Find Full Text PDFEnviron Technol
January 2019
Concrete structures develop biofilms when exposed to various environments. At a certain stage, the microbial films destroy the concrete structures leading to significant deterioration. Culture-dependent techniques give an incomplete picture of the microbial communities on the concrete surface.
View Article and Find Full Text PDFHepatitis C virus (HCV) nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase that plays a key role in HCV replication, and, hence, NS5B is an attractive target for hepatitis C drug discovery. Hepatitis C is a chronic liver disease affecting the global population significantly. Many NS5B inhibitors targeting active site were launched in recent years, however, still there exists a pressing need for cost-effective therapies with pan genotypic activity and therapies targeting niche HCV population with comorbities and resistant to earlier therapies.
View Article and Find Full Text PDFIncreased use of nanoparticles-based products in agriculture portends important implications for agriculture. Therefore, the impact of nano-copper particles (<25 nm and 60-80 nm) on Cu uptake, bioaccumulation (roots, leaves and seeds), activity of ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and lipid peroxidation in leaves and roots of Vigna unguiculata (cowpea) was studied. Plants were exposed to four levels (0, 125, 500 and 1000 mg/kg) of 25 nm or 60-80 nm nano-Cu for 65 days.
View Article and Find Full Text PDFBacterial invasion on biomedical implants is a challenging task for long-term and permanent implant fixations. Prevention of initial bacterial adherence on metallic implants is an important concern to avoid extracellular matrix (biofilm) secretion from bacteria that is resistant to antibacterial agents. In order to overcome this defect, recently, surface coatings such as zirconia (ZrO) with higher smoothness have been shown to improve implants durability.
View Article and Find Full Text PDFBiofouling, especially microfouling, is a major concern with the use of titanium (Ti) in the marine environment as a condenser material in cooling water systems. Earlier, copper-nickel (Cu/Ni) alloys were extensively used in marine environments due to their high corrosion and biofouling resistance. However, the choice of condenser material for the new fast breeder reactor in Kalpakkam is Ti to avoid steam side corrosion problems, which may pose a threat to steam generator parts having sodium as the secondary coolant.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2009
Biofouling is one of the major impediment in the use of titanium, which is otherwise excellent material with respect to corrosion resistance and mechanical properties, for seawater-cooled condensers of power plants. The routine chlorination treatment and sponge ball cleaning may not be successful to keep the titanium condenser tube clean over a period extending to years. This brings into focus the relevance of surface modification of titanium to improve the antimicrobial properties, which can effectively supplement the present treatment programmes.
View Article and Find Full Text PDF