Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery.
View Article and Find Full Text PDFSince its first report in 2006, magnetic particle spectroscopy (MPS)-based biosensors have flourished over the past decade. Currently, MPS are used for a wide range of applications, such as disease diagnosis, foodborne pathogen detection, etc. In this work, different MPS platforms, such as dual-frequency and mono-frequency driving field designs, were reviewed.
View Article and Find Full Text PDFIn this work, we report a 5-min magnetic particle spectroscopy (MPS)-based bioassay strategy. In our approach, surface-functionalized magnetic nanoparticles are incubated with target analytes at 37 °C with agitation for 3 min, and the MPS reading is then taken at the fifth minute. We prove the feasibility of 5 min ultrafast detection of SARS-CoV-2 spike protein with a detection limit below 5 nM (0.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications.
View Article and Find Full Text PDFThe giant magnetoresistance (GMR) effect has seen flourishing development from theory to application in the last three decades since its discovery in 1988. Nowadays, commercial devices based on the GMR effect, such as hard-disk drives, biosensors, magnetic field sensors, microelectromechanical systems (MEMS), etc., are available in the market, by virtue of the advances in state-of-the-art thin-film deposition and micro- and nanofabrication techniques.
View Article and Find Full Text PDFWith the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an increasing quest for more accessible, easy-to-use, rapid, inexpensive, and high-accuracy diagnostic tools. Traditional disease diagnostic methods such as qRT-PCR (quantitative reverse transcription-PCR) and ELISA (enzyme-linked immunosorbent assay) require multiple steps, trained technicians, and long turnaround time that may worsen the disease surveillance and pandemic control. In sight of this situation, a rapid, one-step, easy-to-use, and high-accuracy diagnostic platform will be valuable for future epidemic control, especially for regions with scarce medical resources.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2021
In recent years, magnetic particle spectroscopy (MPS) has become a highly sensitive and versatile sensing technique for quantitative bioassays. It relies on the dynamic magnetic responses of magnetic nanoparticles (MNPs) for the detection of target analytes in the liquid phase. There are many research studies reporting the application of MPS for detecting a variety of analytes including viruses, toxins, nucleic acids, and so forth.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Nowadays, there is an increasing demand for more accessible routine diagnostics for patients with respect to high accuracy, ease of use, and low cost. However, the quantitative and high accuracy bioassays in large hospitals and laboratories usually require trained technicians and equipment that is both bulky and expensive. In addition, the multistep bioassays and long turnaround time could severely affect the disease surveillance and control especially in pandemics such as influenza and COVID-19.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
The paper presents study and analysis of a Giant Magneto Resistance (GMR)-based magneto plethysmograph and illustrates its efficacy as a tool for real-time cuff-less measurement of Blood Pressure (BP). The proposed scheme employs two GMR sensors and associated biasing and signal conditioning in its architecture. The delay between output of the GMR sensors is used to estimate the BP.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
This paper reports a simple and reliable electronic technique for the estimation of respiration rate (RR). Giant Magneto-Resistance (GMR) based sensors are employed to extract a plethysmograph signal from the subject. This signal is filtered and processed further through simple signal processing stages to obtain RR indication.
View Article and Find Full Text PDF