Publications by authors named "Vining K"

Peppermint, Mentha × piperita L., is a hexaploid (2n = 6x = 72) and the predominant cultivar of commercial mint oil production in the US. This cultivar is threatened because of high susceptibility to the fungal disease verticillium wilt, caused by Verticillium dahliae.

View Article and Find Full Text PDF

Craniofacial tissues undergo hard tissue development through mineralization and changes in physicochemical properties. This study investigates the mechanical and chemical properties of developing enamel, dentin, and bone in the mouse mandible. We employ a multi-modal, multi-scale analysis of the developing incisor and first molar at postnatal day 12 by integrating micro-computed tomography (microCT), nanoindentation (NI), energy dispersive spectroscopy (EDS), and Raman spectroscopy.

View Article and Find Full Text PDF

Nucleic acid delivery with mRNA lipid nanoparticles are being developed for targeting a wide array of tissues and cell types. However, targeted delivery to the bone microenvironment remains a significant challenge in the field, due in part to low local blood flow and poor interactions between drug carriers and bone material. Here we report bone-targeting ionizable lipids incorporating a piperazine backbone and bisphosphate moieties, which bind tightly with hydroxyapatite ([Ca(PO)OH]), a key component of mineralized tissues.

View Article and Find Full Text PDF

Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies.

View Article and Find Full Text PDF

CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of and trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of and .

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy.

View Article and Find Full Text PDF

European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut.

View Article and Find Full Text PDF

Metal surgical pins and screws are employed in millions of orthopedic surgical procedures every year worldwide, but their usability is limited in the case of complex, comminuted fractures or in surgeries on smaller bones. Therefore, replacing such implants with a bone adhesive material has long been considered an attractive option. However, synthesizing a biocompatible bone adhesive with a high bond strength that is simple to apply presents many challenges.

View Article and Find Full Text PDF

The efficacy of adoptive T-cell therapies largely depends on the generation of T-cell populations that provide rapid effector function and long-term protective immunity. Yet it is becoming clearer that the phenotypes and functions of T cells are inherently linked to their localization in tissues. Here we show that functionally distinct T-cell populations can be generated from T cells that received the same stimulation by altering the viscoelasticity of their surrounding extracellular matrix (ECM).

View Article and Find Full Text PDF

Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint ( ˣ L.

View Article and Find Full Text PDF

Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are common chronic inflammatory conditions, manifesting as painful oral lesions that negatively affect patients' quality of life. Current treatment approaches are mainly palliative and often ineffective due to inadequate contact time of the therapeutic agent with the lesions. Here, we developed the Dental Tough Adhesive (DenTAl), a bioinspired adhesive patch with robust mechanical properties, capable of strong adhesion against diverse wet and dynamically moving intraoral tissues, and extended drug delivery of clobetasol-17-propionate, a first-line drug for treating OLP and RAS.

View Article and Find Full Text PDF
Article Synopsis
  • * Stiff environments in laboratory settings cause human monocytes to become more inflammatory and differentiate into dendritic cells, while a more flexible environment does not.
  • * Using a specific inhibitor (PI3K-γ) blocks these changes in cell behavior and decreases inflammatory cell types in mice with myelofibrosis, highlighting how the physical properties of the bone marrow contribute to its disease state.
View Article and Find Full Text PDF

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition.

View Article and Find Full Text PDF

is a wild mint species being used as a model to study the genetics of resistance to the fungal wilt pathogen . We used high-throughput Illumina sequencing to study gene expression in response to inoculation in two USDA accessions with contrasting phenotypes: wilt-resistant CMEN 585 and wilt-susceptible CMEN 584. Roots and stems were sampled at two early post-inoculation time points, four hours and twenty-four hours, and again at ten days and twenty days post-inoculation.

View Article and Find Full Text PDF

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts.

View Article and Find Full Text PDF

Terpenoids are a wide variety of natural products and terpene synthase (TPS) plays a key role in the biosynthesis of terpenoids. plants are rich in essential oils, whose main components are terpenoids, and their biosynthetic pathways have been basically elucidated. However, there is a lack of systematic identification and study of TPS in plants.

View Article and Find Full Text PDF

Stripe rust, caused by the fungus f. sp. , is a worldwide disease of wheat that causes devastating crop losses.

View Article and Find Full Text PDF

Human mesenchymal stromal cells (hMSCs) hold great promise in the treatment of inflammatory and immune diseases, due to their immunomodulatory capacity. Their therapeutic activity is often assessed measuring levels of expression of immunomodulatory genes such as indoleamine 2,3-dioxygenase 1 (IDO1) and real-time RT-qPCR is most predominantly the method of choice due to its high sensitivity and relative simplicity. Currently, multiple strategies are explored to promote hMSC-mediated immunomodulation, overlooking the effects they pose in the expression of genes commonly used as internal calibrators in real-time RT-qPCR analyses.

View Article and Find Full Text PDF

is a strongly scented herb of the (formerly ) and includes about 30 species and hybrid species that are distributed or introduced throughout the globe. These fragrant plants have been selected throughout millennia for use by humans as herbs, spices, and pharmaceutical needs. The distilling of essential oils from mint began in Japan and England but has become a significant industrial product for the US, China, India, and other countries.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) hold great therapeutic potential, in part because of their immunomodulatory properties. However, these properties can be transient and depend on multiple factors. Here, we developed a multifunctional hydrogel system to synergistically enhance the immunomodulatory properties of MSCs, using a combination of sustained inflammatory licensing and three-dimensional (3D) encapsulation in hydrogels with tunable mechanical properties.

View Article and Find Full Text PDF

Gene delivery within hydrogel matrices can potentially direct mesenchymal stem cells (MSCs) towards a chondrogenic fate to promote regeneration of cartilage. Here, we investigated whether the mechanical properties of the hydrogel containing the gene delivery systems could enhance transfection and chondrogenic programming of primary human bone marrow-derived MSCs. We developed collagen-I-alginate interpenetrating polymer network hydrogels with tunable stiffness and adhesion properties.

View Article and Find Full Text PDF

Background: Meloidogyne chitwoodi commonly known as Columbia root-knot nematode or CRKN is one of the most devastating pests of potato in the Pacific Northwest of the United States of America. In addition to the roots, it infects potato tubers causing internal as well as external defects, thereby reducing the market value of the crop. Commercial potato varieties with CRKN resistance are currently unavailable.

View Article and Find Full Text PDF