Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-
The purpose of this study was to determine the effect of circulating microvesicles isolated from chronic electronic (e-)cigarette users on cultured human umbilical vein endothelial cell (HUVEC) expression of nuclear factor-κB (NF-κB), cellular cytokine release, phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production. The HUVECs were treated with microvesicles isolated via flow cytometry from nine non-tobacco users (five male and four female; 22 ± 2 years of age) and 10 e-cigarette users (six male and four female; 22 ± 2 years of age). Microvesicles from e-cigarette users induced significantly greater release of interleukin-6 (183.
View Article and Find Full Text PDFUnlabelled: Introduction/ Objective: Estrogen plays a protective role in vascular health due, in part, to its regulation of endothelial inflammation. However, the mechanism(s) by which estrogen negatively regulates inflammatory signaling pathways is not completely understood. MicroRNAs (miRNAs) are recognized as sensitive and selective regulators of cardiovascular function, inflammation, and disease, yet the effects of 17β-estradiol on the endothelial miRNA profile are largely unknown.
View Article and Find Full Text PDFAscorbic acid (AA) may contribute to restoring hemostatic balance after mental stress (MS) in overweight/obese adults. We aimed to determine the effects of AA administration on hemostatic responses to MS in overweight/obese men. Fourteen overweight/obesity men (27 ± 7 years; BMI: 29.
View Article and Find Full Text PDFCirculating endothelial cell-derived microvesicles (EMVs) have been shown to be elevated with obesity and associated with endothelial dysfunction; however, their direct effect on endothelial cells is unknown. The experimental aim of this study was to determine the effect of EMVs isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were identified, enumerated, and isolated from plasma by flow cytometry from 24 sedentary adults: 12 normal-weight adults [8 M/4 F; age: 55 ± 6 yr; body mass index (BMI): 24.
View Article and Find Full Text PDFObjectives: To determine whether spinal cord injury (SCI) is associated with adverse changes in coagulation and fibrinolytic factors that underlie thrombogenesis and contribute to atherothrombotic events such as myocardial infarctions (MIs) and strokes.
Design: Cross-sectional study.
Setting: Neurorehabilitation hospital and general community.
The aim of this study was to determine the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. Circulating EMVs (CD144-PE) were isolated (flow cytometry) from 27 young adults (19-25 yr): 10 nonsmokers (6 M/4 F), 10 e-cigarette users (6 M/4 F), and 7 tobacco cigarette smokers (4 M/3 F). hCMECs were cultured and treated with isolated EMVs for 24 h.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events.
View Article and Find Full Text PDFObesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-β, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production.
View Article and Find Full Text PDFThe main goal was to determine the impact of mental stress (MS) on blood flow regulation in overweight/obese men. Fourteen overweight/obese men (27 ± 7 years; 29.8 ± 2.
View Article and Find Full Text PDFKey Points: The proposed mechanism for the increased ventilation in response to hyperoxia includes a reduced brain CO -[H ] washout-induced central chemoreceptor stimulation that results from a decrease in cerebral perfusion and the weakening of the CO affinity for haemoglobin. Nonetheless, hyperoxia also results in excessive brain reactive oxygen species (ROS) formation/accumulation, which hypothetically increases central respiratory drive and causes hyperventilation. We then quantified ventilation, cerebral perfusion/metabolism, arterial/internal jugular vein blood gases and oxidant/antioxidant biomarkers in response to hyperoxia during intravenous infusion of saline or ascorbic acid to determine whether excessive ROS production/accumulation contributes to the hyperoxia-induced hyperventilation in humans.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Are coagulation and fibrinolytic factors disrupted in Andean highlanders with excessive erythrocytosis? What is the main finding and its importance? Excessive erythrocytosis is not associated with prothombotic disruptions in coagulation or the fibrinolytic system in Andean highlanders. Impairments in coagulation and fibrinolysis may not contribute to the increased vascular risk associated with excessive erythrocytosis.
Abstract: Increased coagulation and reduced fibrinolysis are central factors underlying thrombotic risk and events.
High altitude-related excessive erythrocytosis (EE) is associated with increased cardiovascular risk. The experimental aim of this study was to determine the effects of microvesicles isolated from Andean highlanders with EE on endothelial cell inflammation, oxidative stress, apoptosis, and nitric oxide (NO) production. Twenty-six male residents of Cerro de Pasco, Peru (4,340 m), were studied: 12 highlanders without EE (age: 40 ± 4 yr; BMI: 26.
View Article and Find Full Text PDFObjective: The inability of the organism to appropriately respond to hypoxia results in abnormal cell metabolism and function. Hypoxia-induced angiogenesis seems to be suppressed in experimental models of hypertension; however, this hypothesis has not been tested in humans. We examined changes in endothelial biomarkers and vascular chemoattraction/angiogenic capacity in response to isocapnic hypoxia in hypertensive men.
View Article and Find Full Text PDFThe aim of this study was to determine the effects of endothelin-1 (ET-1)-generated endothelial microvesicles (EMVs) on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). Human umbilical vein endothelial cells (HUVECs) were treated with ET-1 for 24 h. EMVs released into the supernatant from cells treated with ET-1 or vehicle were isolated and quantified.
View Article and Find Full Text PDFPeople with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2020
Isocapnic hyperoxia (IH) evokes cerebral and peripheral hypoperfusion via both disturbance of redox homeostasis and reduction in nitric oxide (NO) bioavailability. However, it is not clear whether the magnitude of the vasomotor responses depends on the vessel network exposed to IH. To test the hypothesis that the magnitude of IH-induced reduction in peripheral blood flow (BF) may differ from the hypoperfusion response observed in the cerebral vascular network under oxygen-enriched conditions, nine healthy men (25 ± 3 yr, mean ± SD) underwent 10 min of IH during either saline or vitamin C (3 g) infusion, separately.
View Article and Find Full Text PDFKey Points: It is unknown whether excessive reactive oxygen species (ROS) production drives the isocapnic hyperoxia (IH)-induced decline in human cerebral blood flow (CBF) via reduced nitric oxide (NO) bioavailability and leads to disruption of the blood-brain barrier (BBB) or neural-parenchymal damage. Cerebral metabolic rate for oxygen (CMR ) and transcerebral exchanges of NO end-products, oxidants, antioxidants and neural-parenchymal damage markers were simultaneously quantified under IH with intravenous saline and ascorbic acid infusion. CBF and were reduced during IH, responses that were followed by increased oxidative stress and reduced NO bioavailability when saline was infused.
View Article and Find Full Text PDFIntroduction: In vitro and animal model studies have demonstrated that oscillatory shear can trigger vascular hemostasis and remodeling. However, the roles of hemodynamic forces in vascular human biology are not well understood. This study aimed to determine the effects of increasing oscillatory shear stress (OSS) on coagulation/fibrinolysis factors and matrix metalloproteinase-9 activity in healthy subjects.
View Article and Find Full Text PDFAims: The influence of blood flow disturbances on vascular function, endothelial activation and repair capacity has not been fully elucidated either in physiological conditions or in cardiovascular disease. We aimed to determine the impact of increases in retrograde blood flow (RBF) on vascular function, endothelial biomarkers and repair capacity in healthy subjects and patients with hypertension.
Main Methods: In seven healthy (CT; 32 ± 15 yr) and eight hypertensive (HT; 34 ± 23 yr) men, flow mediated-dilation (FMD) was assessed before and 10 min after a 30-min maneuver to increase brachial artery RBF in which a pneumatic cuff was inflated to 75 mm Hg on forearm.
Key Points: Hypoxaemia evokes a repertoire of homeostatic adjustments that maintain oxygen supply to organs and tissues including the brain and skeletal muscles. Because hypertensive patients have impaired endothelial-dependent vasodilatation and an increased sympathetic response to arterial oxygen desaturation, we investigated whether hypertension impairs isocapnic hypoxia-induced cerebral and skeletal muscle hyperaemia to an extent that limits oxygen supply. In middle-aged hypertensive men, vertebral and femoral artery blood flow do not increase in response to isocapnic hypoxia, limiting brain and peripheral hyperaemia and oxygen supply.
View Article and Find Full Text PDFAims: Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective l-arginine-NO pathway. Exogenous l-arginine improves endothelial function to prevent the onset of cardiovascular disease, but the mechanism by which this is accomplished remains unclear. We determined the effects of exogenous l-arginine infusion on vascular biomarkers in patients with hypertension.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS) is associated with a higher risk of all-cause mortality. High-sensitivity C-reactive protein (hsCRP) is a prototypic marker of inflammation usually increased in MetS. Women with MetS-related diseases present higher hsCRP levels than men with MetS-related diseases, suggesting sex differences in inflammatory markers.
View Article and Find Full Text PDF