The cure fraction models are intended to analyze lifetime data from populations where some individuals are immune to the event under study, and allow a joint estimation of the distribution related to the cured and susceptible subjects, as opposed to the usual approach ignoring the cure rate. In situations involving small sample sizes with many censored times, the detection of nonfinite coefficients may arise via maximum likelihood. This phenomenon is commonly known as monotone likelihood (ML), occurring in the Cox and logistic regression models when many categorical and unbalanced covariates are present.
View Article and Find Full Text PDFModels for situations where some individuals are long-term survivors, immune or non-susceptible to the event of interest, are extensively studied in biomedical research. Fitting a regression can be problematic in situations involving small sample sizes with high censoring rate, since the maximum likelihood estimates of some coefficients may be infinity. This phenomenon is called monotone likelihood, and it occurs in the presence of many categorical covariates, especially when one covariate level is not associated with any failure (in survival analysis) or when a categorical covariate perfectly predicts a binary response (in the logistic regression).
View Article and Find Full Text PDFIn this study we introduce a likelihood-based method, via the Weibull and piecewise exponential distributions, capable of accommodating the dependence between failure and censoring times. The methodology is developed for the analysis of clustered survival data and it assumes that failure and censoring times are mutually independent conditional on a latent frailty. The dependent censoring mechanism is accounted through the frailty effect and this is accomplished by means of a key parameter accommodating the correlation between failure and censored observations.
View Article and Find Full Text PDFIn this paper we analyze the fraction of non-disjunction in Meiosis I assuming reference (non-informative) priors. We consider Jeffreys's approach to built a non-informative prior (Jeffreys's prior) for the fraction of non-disjunction in Meiosis I. We prove that Jeffreys's prior is a proper distribution.
View Article and Find Full Text PDF