Humoral immune responses within the gut play diverse roles including pathogen clearance during enteric infections, maintaining tolerance, and facilitating the assemblage and stability of the gut microbiota. How these humoral immune responses are initiated and contribute to these processes are well studied. However, the signals promoting the expansion of these responses and their rapid mobilization to the gut mucosa are less well understood.
View Article and Find Full Text PDFVancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions.
View Article and Find Full Text PDFAllergic disorders, characterized by Th2 immune responses to environmental substances, are increasingly common in children in Western societies. Multiple studies indicate that breastfeeding, early complementary introduction of food allergens, and antibiotic avoidance in the first year of life reduces allergic outcomes in at-risk children. Why the benefit of these practices is restricted to early life is largely unknown.
View Article and Find Full Text PDFMycobacterium tuberculosis (M.tb) is likely the most successful human pathogen, capable of evading protective host immune responses and driving metabolic changes to support its own survival and growth. Ineffective innate and adaptive immune responses inhibit effective clearance of the bacteria from the human host, resulting in the progression to active TB disease.
View Article and Find Full Text PDFMonocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic MDSCs (G-MDSCs) have been found to be massively induced in TB patients as well in murine Mtb infection models. However, the interaction of mycobacteria with MDSCs and its role in TB infection is not well studied. Here, we investigated the role of Cav-1 for MDSCs infected with Bacille-Calmette-Guerín (BCG).
View Article and Find Full Text PDFBCG (Bacillus Calmette-Guérin) is the only available vaccine against TB and is also used for the treatment of superficial bladder cancer. BCG-mediated protection against TB and bladder cancer has been shown to rely on its ability to induce superior CD4 and CD8 T cell responses. As the magnitude of T cell responses is defined by dendritic cell (DC) lifespan, we examined the effect of BCG on DC survival and its underlying mechanisms.
View Article and Find Full Text PDFObjectives: Antidepressant treatment alters brain-derived neurotrophic factor (BDNF) levels, but it is not well established whether BDNF can be used as a marker to prove the efficacy of antidepressant treatment. The present systematic review and meta-analysis aim at assessing the influence of antidepressant treatment on BDNF level and the Hamilton Depression Rating Scale (HDRS) score, thereby to establish the rationale of utilizing BDNF as a predictive biomarker and HDRS score as an indicator for antidepressant treatment efficacy.
Materials And Methods: Search was conducted in PubMed, Science Direct, and Cochrane databases using the key words "BDNF" and "Depression" and "Antidepressants.
Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3+ induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CThi, CTlo) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β).
View Article and Find Full Text PDFMIP is a nonpathogenic, soil-borne predecessor of Mycobacterium avium. It has been reported previously that MIP possesses strong immunomodulatory properties and confers protection against experimental TB and tumor. DCs, by virtue of their unmatched antigen-presentation potential, play a critical role in activation of antitumor and antimycobacterial immune response.
View Article and Find Full Text PDF