Publications by authors named "Viney M"

Background: Strongyloides nematodes are livestock parasites, and Strongyloides papillosus infecting ruminant livestock can cause disease. Recent genomic analysis of several Strongyloides species is now facilitating population genomic analyses of natural Strongyloides infections, for example finding that Strongyloides ratti in wild UK rats exists as an assemblage of long-lived, asexual lineages.

Methods: Here we have initiated an investigation into the population genomics of S.

View Article and Find Full Text PDF

Protozoa are well-known inhabitants of the mammalian gut and so of the gut microbiome. While there has been extensive study of a number of species of gut protozoa in laboratory animals, particularly rodents, the biology of the gut protozoa of wild rodents is much less well-known. Here we have systematically searched the published literature to describe the gut protozoa of wild rodents, in total finding records of 44 genera of protozoa infecting 228 rodent host species.

View Article and Find Full Text PDF

The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, driving microbial evolution.

View Article and Find Full Text PDF
Article Synopsis
  • The genus of parasitic nematodes is significant both for its complex life cycle and its role as a health threat to humans, categorized as a neglected tropical disease by the WHO.
  • A group of researchers has outlined thirteen key questions focused on the biology and infection mechanics of these nematodes, aiming to guide future studies.
  • This article contributes to the Theo Murphy meeting issue titled "omics to worm-free populations," indicating a broader discussion on scientific approaches to managing these parasites.
View Article and Find Full Text PDF
Article Synopsis
  • * Research using whole-genome sequencing shows that UK populations of S. ratti consist mostly of asexual lineages that are ancient and likely originated from Asia.
  • * The genes linked to the parasite's life cycle are highly diverse, which may help them thrive in varied host environments, suggesting that similar patterns could also be present in human-infecting Strongyloides species and influence control strategies.
View Article and Find Full Text PDF

Wild animals are under constant threat from a wide range of micro- and macroparasites in their environment. Animals make immune responses against parasites, and these are important in affecting the dynamics of parasite populations. Individual animals vary in their anti-parasite immune responses.

View Article and Find Full Text PDF

Wild animals are naturally infected with a range of viruses, some of which may be zoonotic. During the human COVID pandemic there was also the possibility of rodents acquiring SARS-CoV-2 from people, so-called reverse zoonoses. To investigate this, we sampled rats () and mice () from urban environments in 2020 during the human COVID-19 pandemic.

View Article and Find Full Text PDF

The small RNA (sRNA) pathways identified in the model organism Caenorhabditis elegans are not widely conserved across nematodes. For example, the PIWI pathway and PIWI-interacting RNAs (piRNAs) are involved in regulating and silencing transposable elements (TE) in most animals but have been lost in nematodes outside of the C. elegans group (Clade V), and little is known about how nematodes regulate TEs in the absence of the PIWI pathway.

View Article and Find Full Text PDF

Strongyloides' developmental switch between direct, parasitic and indirect, free-living development has intrigued, confused, and fascinated biologists since it was first discovered more than 100 years ago. Proximately, the switch is controlled by environmental conditions that developing larvae are exposed to, but genotypes differ in their sensitivity to these cues. Ultimately, selection will act on this switch to generate a direct vs.

View Article and Find Full Text PDF

Stunting (low height for age) affects approximately one-quarter of children aged < 5 years worldwide. Given the limited impact of current interventions for stunting, new multisectoral evidence-based approaches are needed to decrease the burden of stunting in low- and middle-income countries (LMICs). Recognizing that the health of people, animals, and the environment are connected, we present the rationale and research agenda for considering a One Health approach to child stunting.

View Article and Find Full Text PDF

The mammalian immune system protects individuals from infection and disease. It is a complex system of interacting cells and molecules, which has been studied extensively to investigate its detailed function, principally using laboratory mice. Despite the complexity of the immune system, it is often analysed using a restricted set of immunological parameters.

View Article and Find Full Text PDF

Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference.

View Article and Find Full Text PDF

Unfortunately, the original version of this article [1] contains an error. In the section entitled "Influence of anthropogenic disruption on parasitic nematode population genetics", the passage.

View Article and Find Full Text PDF

Parasitic nematodes are highly diverse and common, infecting virtually all animal species, and the importance of their roles in natural ecosystems is increasingly becoming apparent. How genes flow within and among populations of these parasites - their population genetics - has profound implications for the epidemiology of host infection and disease, and for the response of parasite populations to selection pressures. The population genetics of nematode parasites of wild animals may have consequences for host conservation, or influence the risk of zoonotic disease.

View Article and Find Full Text PDF

The gut microbiota can have important, wide-ranging effects on its host. To date, laboratory animals, particularly mice, have been the major study system for microbiota research. It is now becoming increasingly clear that laboratory animals often poorly model aspects of the biology of wild animals, and this concern extends to the study of the gut microbiota.

View Article and Find Full Text PDF

The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans.

View Article and Find Full Text PDF

It is normal for hosts to be co-infected by parasites. Interactions among co-infecting species can have profound consequences, including changing parasite transmission dynamics, altering disease severity and confounding attempts at parasite control. Despite the importance of co-infection, there is currently no way to predict how different parasite species may interact with one another, nor the consequences of those interactions.

View Article and Find Full Text PDF

Wild animals' immune responses contribute to their evolutionary fitness. These responses are moulded by selection to be appropriate to the actual antigenic environment in which the animals live, but without imposing an excessive energetic demand which compromises other component of fitness. But, exactly what these responses are, and how they compare with those of laboratory animals, has been little studied.

View Article and Find Full Text PDF

Background: Animals use information from their environment to make decisions, ultimately to maximize their fitness. The nematode C. elegans has a pheromone signalling system, which hitherto has principally been thought to be used by worms in deciding whether or not to arrest their development as larvae.

View Article and Find Full Text PDF
The genomic basis of nematode parasitism.

Brief Funct Genomics

January 2018

Nematodes are highly abundant animals, and many species have a parasitic lifestyle. Nematode parasites are important pathogens of humans and other animals, and there is considerable interest in understanding their molecular and genomic adaptations to nematode parasitism. This has been approached in three main ways: comparing the genomes of closely related parasitic and free-living taxa, comparing the gene expression of parasitic and free-living life cycle stages of parasitic nematode species, and analysing the molecules that parasitic nematodes excrete and secrete.

View Article and Find Full Text PDF

The laboratory mouse is the workhorse of immunology, used as a model of mammalian immune function, but how well immune responses of laboratory mice reflect those of free-living animals is unknown. Here we comprehensively characterize serological, cellular and functional immune parameters of wild mice and compare them with laboratory mice, finding that wild mouse cellular immune systems are, comparatively, in a highly activated (primed) state. Associations between immune parameters and infection suggest that high level pathogen exposure drives this activation.

View Article and Find Full Text PDF

Transmission is a fundamental step in the life cycle of every parasite but it is also one of the most challenging processes to model and quantify. In most host-parasite models, the transmission process is encapsulated by a single parameter Many different biological processes and interactions, acting on both hosts and infectious organisms, are subsumed in this single term. There are, however, at least two undesirable consequences of this high level of abstraction.

View Article and Find Full Text PDF

Nematodes are very common animals and they have repeatedly evolved parasitic lifestyles during their evolutionary history. Recently, the genomes of many nematodes, especially parasitic species, have been determined, potentially giving an insight into the genetic and genomic basis of nematodes' parasitism. But, to achieve this, phylogenetically appropriate comparisons of genomes of free-living and parasitic species are needed.

View Article and Find Full Text PDF