Publications by authors named "Vineeta Kaushik"

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF
Article Synopsis
  • TPEF is an advanced imaging technique that allows for in-depth biological tissue imaging, especially useful in cancer diagnostics and ophthalmology.
  • Recent developments in adaptive optics help correct imaging aberrations in the eye, enhancing the quality of images obtained from animal models of human diseases.
  • Advances in laser technology have improved the safety and effectiveness of TPEF, positioning it as a promising tool for both clinical applications and diagnostics in ophthalmology.
View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident.

View Article and Find Full Text PDF

l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed.

View Article and Find Full Text PDF

The Archaea constitute separate domain of life and show resemblance with bacteria in their metabolic pathways while showing similarity with eukaryotes at the level of molecular processes such as cell division, DNA replication, protein synthesis, and proteostasis. However, the molecular machinery of archaea can be considered a simpler version of that found in eukaryotes because of the absence of multiple paralogs for any given molecular factor. Therefore, archaeal systems can possibly be used as a model system for understanding the eukaryotic protein folding machinery and thereby may help to address the molecular mechanism of various protein (mis)foldings and diseases.

View Article and Find Full Text PDF

Cis-trans isomerization of the peptide bond prior to proline is an intrinsically slow process but plays an essential role in protein folding. isomerization reaction is catalyzed by Peptidyl-prolyl isomerase (PPIases), a category of proteins widely distributed among all the three domains of life. The present study is majorly focused on the distribution of different types of PPIases in the archaeal domain.

View Article and Find Full Text PDF

The archaeal protein folding machinery is quite similar to that found in eukaryotes, especially in terms of shared components like chaperones. Cyclophilins are chaperones found in both eukaryotes and archaea, which catalyze the reversible cis-trans isomerization around peptidyl-prolyl imide bond (PPIase activity). Eukaryotes possess multiple cyclophilin genes, many of which have acquired divergent functions.

View Article and Find Full Text PDF

Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated (CRISPR-Cas) systems present in genomes of bacteria and archaea have been the focus of many research studies recently. The Cas4 proteins of these systems are thought to be responsible for the adaptation step in the CRISPR mechanism. Cas4 proteins exhibit low sequence similarity among themselves and are currently classified into 2 main classes: DUF83 and DUF911.

View Article and Find Full Text PDF