The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus.
View Article and Find Full Text PDFBackground: Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding L-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway.
View Article and Find Full Text PDFBiotechnol Biofuels
September 2011
Background: The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.
View Article and Find Full Text PDFWe report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection.
View Article and Find Full Text PDFNatural products have provided considerable value to the pharmaceutical industry over the past half century. In particular, the therapeutic areas of infectious diseases and oncology have benefited from numerous drug classes derived from natural product sources. Unfortunately, pharmaceutical companies have significantly decreased activities in natural product discovery during the past several years.
View Article and Find Full Text PDFThree daptomycin-related lipopeptides, A21978C1-3(d-Asn11) (2-4), were purified from the fermentation broth of a recombinant Streptomyces roseosporus strain. Their chemical structures were determined by analyses of the biosynthetic pathway, chemical transformations, d,l-amino acid quantitation by enantiomer labeling, tandem LC-MS/MS, and 2D-NMR techniques. Compounds 2-4 exhibited potent antibacterial activity against Staphylococcus aureus with MIC values of 0.
View Article and Find Full Text PDFThe attributes of the yeast Kluyveromyces marxianus (rapid growth rate at high temperature, utilization of a wide range of inexpensive carbon sources) make it a promising industrial host for the synthesis of protein and non-protein products. However, no stable multicopy plasmids are currently available for long-term culture of K. marxianus.
View Article and Find Full Text PDF