Publications by authors named "Vineesh V Raveendran"

Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens.

View Article and Find Full Text PDF

After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.

View Article and Find Full Text PDF

Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied transcriptome changes in a chronic progressive HF model.

View Article and Find Full Text PDF

Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked.

View Article and Find Full Text PDF

Mast cells play an important role in immunomodulation and in the maintenance of vascular integrity. Interleukin-6 (IL-6) is one of the key biomarkers and therapeutic target in systemic vasculitis. The objective of the current study is to describe the role of mast cells in arterial IL-6 homeostasis.

View Article and Find Full Text PDF

Mast cells are important cells of the immune system. Although traditionally considered as key players in allergic and hypersensitivity reactions, emerging evidence suggests that mast cells have many complex roles in vascular disease. These include regulation of vasodilation, angiogenesis, activation of matrix metalloproteinases, apoptosis of smooth muscle cells, and activation of the renin angiotensin system.

View Article and Find Full Text PDF

Although increased serum histamine levels and H1R expression in the plaque are seen in atherosclerosis, it is not known whether H1R activation is a causative factor in the development of the disease, or is a host defense response to atherogenic signals. In order to elucidate how pharmacological inhibition of histamine receptor 1 (H1R) signaling affects atherogenesis, we administered either cetirizine (1 and 4 mg/kg. b.

View Article and Find Full Text PDF

We examined the effects of two over-the-counter H1-antihistamines on the progression of fatty liver disease in male C57Bl/6 wild-type and apolipoprotein E (ApoE)-/- mice. Mice were fed a high-fat diet (HFD) for 3 mo, together with administration of either cetirizine (4 mg/kg body wt) or fexofenadine (40 mg/kg body wt) in drinking water. Antihistamine treatments increased body weight gain, gonadal fat deposition, liver weight, and hepatic steatosis in wild-type mice but not in ApoE-/- mice.

View Article and Find Full Text PDF

Mast cells are important cells of the immune system and are recognized as participants in the pathogenesis of atherosclerosis. In this study, we evaluated the role of mast cells on the progression of atherosclerosis and hepatic steatosis using the apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)/mast cell-deficient (Kit(W-sh/W-sh)) mouse models maintained on a high-fat diet. The en face analyses of aortas showed a marked reduction in plaque coverage in ApoE(-/-)/Kit(W-sh/W-sh) compared with ApoE(-/-) after a 6-mo regimen with no significant change noted after 3 mo.

View Article and Find Full Text PDF

We examined the effect of intact human mast cells (HMC-1 5C6) and their selected mediators on interleukin-6 (IL-6) production and bone morphogenetic protein-2 (BMP-2) expression in human coronary artery endothelial cells (HCAEC) in the presence and absence of lipopolysaccharide (LPS). Scanning electron microscopy showed that HMC-1 5C6 cells adhere to HCAEC in cocultures. Addition of HMC-1 5C6 cells markedly enhanced the IL-6 production by quiescent and LPS-activated HCAEC even at the maximal concentration of LPS.

View Article and Find Full Text PDF

The biological effects of the anthraquinone fraction (AQf) isolated from in vitro cultures of Ophiorrhiza rugosa Wall. var decumbens (Rubiaceae) were evaluated. AQf showed differential activity on reactive oxygen species; it mediated the generation of superoxide radical and inhibited hydroxyl radical and lipid peroxidation.

View Article and Find Full Text PDF

Summary Histamine is a well-recognized modulator of vascular inflammation. We have shown that histamine, acting via H1 receptors (H1R), synergizes lipopolysaccharide (LPS)-induced production of prostaglandin I(2) (PGI(2)), PGE(2) and interleukin-6 (IL-6) by endothelial cells. The synergy between histamine and LPS was partly attributed to histamine -induced expression of Toll-like receptor 4 (TLR4).

View Article and Find Full Text PDF