Purpose: Type 1 Diabetes (T1D) pathogenesis involves immune cells infiltrating pancreatic Islets of Langerhans, leading to T cell activation, beta cell destruction, and impaired insulin production. However, infiltration has a heterogenic nature that isn't described in detail, as not all islets are infiltrated. The aim of this study was to investigate if the observed heterogeneity is coupled to differences in immune and/or dysfunctional status of islets or exocrine cells, and if specific markers could elucidate mechanistic details of T1D pathogenesis.
View Article and Find Full Text PDFApplications of lipases in low-water environments are found across a broad range of industries, including the pharmaceutical and oleochemical sectors. This includes condensation reactions in organic solvents where the enzyme activity has been found to depend strongly on both the solvent and the water activity (). Despite several experimental and computational studies, knowledge is largely empirical, and a general predictive approach is much needed.
View Article and Find Full Text PDFUnlike laccases sensu stricto, which are usually monomeric enzymes, laccase-like enzymes recently re-classified as Novel Laccases (NLACs) are characterized by the formation of heterodimers with small proteins (subunits) of unknown function. Here the NLAC from Pleurotus eryngii (PeNL) and a small protein selected from the fungal genome, that is homologous to reported POXA3 from Pleurotus ostreatus, were produced in Aspergillus oryzae separately or together. The two proteins interacted regardless of whether the small subunit was co-expressed or exogenously added to the enzyme.
View Article and Find Full Text PDFMulti-copper oxidases (MCO) share a common molecular architecture and the use of copper ions as cofactors to reduce O to HO, but show high sequence heterogeneity and functional diversity. Many new emerging MCO genes are wrongly annotated as laccases, the largest group of MCOs, with the widest range of biotechnological applications (particularly those from basidiomycete fungi) due to their ability to oxidise aromatic compounds and lignin. Thus, comprehensive studies for a better classification and structure-function characterisation of MCO families are required.
View Article and Find Full Text PDFAs the European power system decarbonizes, the variability of the mismatch between renewable generation and demand, as well as that of electricity prices, are expected to increase substantially. Because mismatch and prices show complex temporal and spatial interaction, we propose the use of principal component analysis (PCA) to investigate them. We unveil their main spatiotemporal patterns, examine their cross-correlation, and their dependence on the transmission capacity expansion and emissions reduction in a highly renewable cost-optimal electricity model.
View Article and Find Full Text PDFFungal laccases have great potential as biocatalysts oxidizing a variety of aromatic compounds using oxygen as co-substrate. Here, the crystal structure of 7D5 laccase (PDB 6H5Y), developed in Saccharomyces cerevisiae and overproduced in Aspergillus oryzae, is compared with that of the wild type produced by basidiomycete PM1 (Coriolopsis sp.), PDB 5ANH.
View Article and Find Full Text PDFFungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with HO as the source of oxygen and final electron acceptor.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
January 2017
Here, we present a lipase mutant containing a biochemical switch allowing a controlled opening and closing of the lid independent of the environment. The closed form of the TlL mutant shows low binding to hydrophobic surfaces compared to the binding observed after activating the controlled switch inducing lid-opening. We directly show that lipid binding of this mutant is connected to an open lid conformation demonstrating the impact of the exposed amino acid residues and their participation in binding at the water-lipid interface.
View Article and Find Full Text PDFPolyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases.
View Article and Find Full Text PDFThermomyces lanuginosus lipase (TlL) and related lipases become activated in low-polarity environments that exist at the water-lipid interface where a structural change of the "lid" region occurs. In this work, we have investigated the activation of TlL (Lipase_W89) and certain lid mutants, containing either a single positive charge mutation, E87K (Lipase_K87_W89), within the lid region or a lid residue composition of both lipase and esterase character (Hybrid_W89) as a function of solvent polarity. Activation differences between the variants and TlL were studied by a combination of biophysical and theoretical methods.
View Article and Find Full Text PDFWe have used the crystal structure of Thermomyces lanuginosus lipase (TlL) to identify and strengthen potential protein-protein interaction sites in solution. As wildtype we used a deglycosylated mutant of TlL (N33Q). We designed a number of TlL mutants to promote interactions via interfaces detected in the crystal-lattice structure, through strengthening of hydrophobic, polar or electrostatic contacts or truncation of sterically blocking residues.
View Article and Find Full Text PDFIt is shown by rational site-directed mutagenesis of the lid region in Thermomyces lanuginosus lipase that it is possible to generate lipase variants with attractive features, e.g., high lipase activity, fast activation at the lipid interface, ability to act on water-soluble substrates, and enhanced calcium independence.
View Article and Find Full Text PDFThe impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the properties of sparsely-populated, partially-unfolded intermediates.
View Article and Find Full Text PDFPhytases hydrolyse phytate (myo-inositol hexakisphosphate), the principal form of phosphate stored in plant seeds to produce phosphate and lower phosphorylated myo-inositols. They are used extensively in the feed industry, and have been characterised biochemically and structurally with a number of structures in the PDB. They are divided into four distinct families: histidine acid phosphatases (HAP), β-propeller phytases, cysteine phosphatases and purple acid phosphatases and also split into three enzyme classes, the 3-, 5- and 6-phytases, depending on the position of the first phosphate in the inositol ring to be removed.
View Article and Find Full Text PDFFour Humicola insolens Cel7B glycoside hydrolase mutants have been evaluated for the coupling of lactosyl fluoride on O-allyl N(I)-acetyl-2(II)-azido-beta-chitobioside. Double mutants Cel7B E197A H209A and Cel7B E197A H209G preferentially catalyze the formation of a beta-(1-->4) linkage between the two disaccharides, while single mutant Cel7B E197A and triple mutant Cel7B E197A H209A A211T produce predominantly the beta-(1-->3)-linked tetrasaccharide. This result constitutes the first report of the modulation of the regioselectivity through site-directed mutagenesis for an endoglycosynthase.
View Article and Find Full Text PDFPhospholipids are present in all living organisms. They are a major component of all biological membranes, along with glycolipids and cholesterol. Enzymes aimed at modifying phospholipids, namely, phospholipases, are consequently widespread in nature, playing very diverse roles from aggression in snake venom to signal transduction and digestion in humans.
View Article and Find Full Text PDFA simple and versatile method for the preparation of functional enzyme-gold nanoparticle conjugates using "click" chemistry has been developed. In a copper-catalyzed 1,2,3-triazole cycloaddition, an acetylene-functionalized Thermomyces lanuginosus lipase has been attached to azide-functionalized water-soluble gold nanoparticles under retention of enzymatic activity. The products have been characterized by gel electrophoresis and a fluorometric lipase activity assay.
View Article and Find Full Text PDFClick chemistry is used to construct a novel lipase-BSA hetero-dimer, in which the latter protein acts as a foot enabling the anchoring of the enzyme onto the surface for single enzyme studies.
View Article and Find Full Text PDFEnzymatic hydrolysis of arabinoxylan is an important prerequisite for the utilization of hemicellulose for ethanol fermentation or for making the low calorie sweetener xylitol by catalytic hydrogenation of the generated xylose. This study focus on cloning and characterization of two industrial relevant beta-xylosidases (1,4-beta-D-xylan xylohydrolase, EC 3.2.
View Article and Find Full Text PDFThe mechanism of allosteric activation of alpha-amylase by chloride has been studied through structural and kinetic experiments focusing on the chloride-dependent N298S variant of human pancreatic alpha-amylase (HPA) and a chloride-independent TAKA-amylase. Kinetic analysis of the HPA variant clearly demonstrates the pronounced activating effect of chloride ion binding on reaction rates and its effect on the pH-dependence of catalysis. Structural alterations observed in the N298S variant upon chloride ion binding suggest that the chloride ion plays a variety of roles that serve to promote catalysis.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
June 2003
The structure of the peroxidase from Coprinus cinereus (CiP) has been determined in three different space groups and crystalline environments. Two of these are of the recombinant glycosylated form (rCiP), which crystallized in space groups P2(1)2(1)2(1) and C2. The third crystal form was obtained from a variant of CiP in which the glycosylation sites have been removed (rCiPON).
View Article and Find Full Text PDFThe binding orientation of the interfacially activated Thermomyces lanuginosa lipase (TLL, EC 3.1.1.
View Article and Find Full Text PDFThe binding of Thermomyces lanuginosa lipase and its mutants [TLL(S146A), TLL(W89L), TLL(W117F, W221H, W260H)] to the mixed micelles of cis-parinaric acid/sodium taurodeoxycholate at pH 5.0 led to the quenching of the intrinsic tryptophan fluorescence emission (300-380 nm) and to a simultaneous increase in the cis-parinaric acid fluorescence emission (380-500 nm). These findings were used to characterize the Thermomyces lanuginosa lipase/cis-parinaric acid interactions occurring in the presence of sodium taurodeoxycholate.
View Article and Find Full Text PDF