Publications by authors named "Vinci M"

Anderson-Fabry disease is a hereditary, progressive, multisystemic lysosomal storage disorder caused by a functional deficiency of the enzyme α-galactosidase A (α-GalA). This defect is due to mutations in the gene, located in the long arm of the X chromosome (Xq21-22). Functional deficiency of the α-GalA enzyme leads to reduced degradation and accumulation of its substrates, predominantly globotriaosylceramide (Gb3), which accumulate in the lysosomes of numerous cell types, giving rise to the symptomatology.

View Article and Find Full Text PDF

AMPylation is a post-translational modification involving the transfer of adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to target proteins, serving as a critical regulatory mechanism in cellular functions. This study aimed to expand the phenotypic spectrum associated with mutations in the FICD gene, which encodes an adenyltransferase enzyme involved in both AMPylation and deAMPylation. A clinical evaluation was conducted on a patient presenting with a complex clinical profile.

View Article and Find Full Text PDF

Optimal immune function is crucial in preventing cancer development and growth and for the success of anti-cancer therapies. Here, we characterized the peripheral immunological status of 83 steroids-naïve pediatric patients with central nervous system neoplasia at the disease onset. Tumors were classified into low-grade gliomas (LGG), high-grade gliomas (HGG), medulloblastoma, and other tumors.

View Article and Find Full Text PDF

Background: Diffuse midline glioma, H3 K27-altered (DMG) is a fatal tumour that arises in the midline structures of the brain. When located in the pons, it is more commonly referred to as diffuse intrinsic pontine glioma (DIPG). DMG/DIPG is usually diagnosed when children are < 10 years, and it has a median overall survival of < 12 months after diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • * A patient was found with a specific mutation in TRMT10A causing issues like spastic-ataxic paraparesis and a variant of Dandy-Walker malformation.
  • * This case suggests that TRMT10A may play a critical role in brain development, indicating a need for further research into its effects on neurological conditions and potential treatments.
View Article and Find Full Text PDF
Article Synopsis
  • There is a significant gap in effective prevention and treatment methods for cardiovascular disease and microvascular complications caused by diabetes, despite extensive research on the underlying mechanisms.
  • Recent studies suggest that epigenetic factors, like DNA methylation and histone modifications, may contribute to the development of these complications and can potentially be targeted for therapeutic purposes.
  • This review highlights the links between diabetes and cardiovascular issues while discussing promising epigenetic drugs (or "epidrugs") that, although still in developmental stages, could offer new treatment options in the future.
View Article and Find Full Text PDF

Introduction: Vaccination practice is a well-known individual protective measure for biological risk in healthcare. During the COVID-19 pandemic vaccine hesitancy has grown among healthcare workers (HCWs). The study aims to investigate how vaccine hesitancy influences the psychological burden experienced by healthcare workers.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) is a family of multifunctional enzymatic complexes crucial for cellular signalling, playing a pivotal role in brain function and development. Mutations in specific genes encoding PP2A complexes have been associated with neurodevelopmental disorders with hypotonia and high risk of seizures. In the current work, we present an individual with specific learning problems, motor coordination disorders, hypotonia and behavioural issues.

View Article and Find Full Text PDF
Article Synopsis
  • Diffuse hemispheric gliomas, specifically H3G34R/V-mutant, are aggressive brain tumors with no current targeted therapies and come from neural precursor cells.
  • Researchers found that these tumors display developmental patterns similar to healthy brain interneurons and identified key genes that these tumor cells depend on, especially CDK6.
  • Targeting CDK6 with inhibitors showed promising results in reducing tumor growth and improving survival in experimental models, with one patient showing a significant response to treatment.
View Article and Find Full Text PDF

Hypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the periventricular region of the brain.

View Article and Find Full Text PDF

The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 () gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice.

View Article and Find Full Text PDF

: Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of pediatric PF tumors. Estimating diffusion values from whole-tumor-based (VOI) segmentations may improve diffusion measurement repeatability compared to conventional region-of-interest (ROI) approaches.

View Article and Find Full Text PDF

() genes, a recently discovered gene family, play crucial roles in the regulation of neuronal stem cell proliferation and glial differentiation during nervous system development and neurogenesis. Whole exome sequencing (WES) in patients presenting with generalized epilepsy, intellectual disability, and childhood emotional behavioral disorder, uncovered a variation within gene. Notably, this gene has never been associated with neurodevelopmental disorders.

View Article and Find Full Text PDF

E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES).

View Article and Find Full Text PDF

Background: The term gliomatosis cerebri (GC), a radiology-defined highly infiltrating diffuse glioma, has been abandoned since molecular GC-associated features could not be established.

Methods: We conducted a multinational retrospective study of 104 children and adolescents with GC providing comprehensive clinical and (epi-)genetic characterization.

Results: Median overall survival (OS) was 15.

View Article and Find Full Text PDF

In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models.

View Article and Find Full Text PDF

Background: Diabetes-induced trained immunity contributes to the development of atherosclerosis and its complications. This study aimed to investigate in humans whether epigenetic signals involved in immune cell activation and inflammation are initiated in hematopoietic stem/progenitor cells (HSPCs) and transferred to differentiated progeny.

Methods And Results: High glucose (HG)-exposure of cord blood (CB)-derived HSPCs induced a senescent-associated secretory phenotype (SASP) characterized by cell proliferation lowering, ROS production, telomere shortening, up-regulation of p21 and p27genes, upregulation of NFkB-p65 transcription factor and increased secretion of the inflammatory cytokines TNFα and IL6.

View Article and Find Full Text PDF
Article Synopsis
  • The UNC-5 family of netrin receptor genes is crucial for neuronal processes and is predominantly expressed in brain tissues.
  • Mutations in these genes can lead to various human diseases, including developmental and neuropsychiatric disorders.
  • In a patient with psychiatric disorders, two specific mutations in the UNC5C gene were identified, which disrupt key processes in axon development, linking this gene to psychiatric conditions for the first time.
View Article and Find Full Text PDF

Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity.

View Article and Find Full Text PDF

Ion channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction.

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEE) are severe neurodevelopmental disorders characterized by recurrent, usually early-onset, epileptic seizures accompanied by developmental impairment often related to both underlying genetic etiology and abnormal epileptiform activity. Today, next-generation sequencing technologies (NGS) allow us to sequence large portions of DNA quickly and with low costs. The aim of this study is to evaluate the use of whole-exome sequencing (WES) as a first-line molecular genetic test in a sample of subjects with DEEs characterized by early-onset drug-resistant epilepsies, associated with global developmental delay and/or intellectual disability (ID).

View Article and Find Full Text PDF

Vascular calcification (VC) is an age-related complication characterised by calcium-phosphate deposition in the arterial wall driven by the osteogenic transformation of vascular smooth muscle cells (VSMCs). The JAK-STAT pathway is an emerging target in inflammation. Considering the relationship between VC and inflammation, we investigated the role of JAK-STAT signalling during VSMC calcification.

View Article and Find Full Text PDF

Objective: To describe the potential clinical cardiotoxicity of oncological treatments in a cohort of consecutive patients with hypertrophic cardiomyopathy (HCM), systematically followed-up at two national referral centers for HCM. Cardiotoxicity relates to the direct effects of cancer-related treatment on heart function, commonly presenting as left ventricular contractile dysfunction. However, limited data are available regarding cardiotoxic effects on HCM as most studies have not specifically analyzed the effects of oncological treatment in HCM populations.

View Article and Find Full Text PDF

Syntaxin-binding protein 6 (STXBP6), also known as amysin, is an essential component of the SNAP receptor (SNARE) complex and plays a crucial role in neuronal vesicle trafficking. Mutations in genes encoding SNARE proteins are often associated with a broad spectrum of neurological conditions defined as "SNAREopathies", including epilepsy, intellectual disability, and neurodevelopmental disorders such as autism spectrum disorders. The present whole exome sequencing (WES) study describes, for the first time, the occurrence of developmental epileptic encephalopathy and autism spectrum disorders as a result of a de novo deletion within the gene.

View Article and Find Full Text PDF