The human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential for regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumour aggressiveness and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulate its RNA binding activities. Here, using a combination of Molecular Dynamics (MD) simulations and graph neural network pocket predictions, we showed that hnRNPA1 N-terminal RNA binding domain (UP1) contains several cryptic pockets capable of binding small molecules.
View Article and Find Full Text PDFThe Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone H, N, C chemical shift assignment of the full-length human Alkbh7.
View Article and Find Full Text PDFThe human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential in regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumour aggressiveness and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulates its RNA binding activities. Here, using a combination of Molecular Dynamics (MD) simulations and graph neural network pockets predictions, we showed that hnRNPA1 N-terminal RNA binding domain (UP1) contains several cryptic pockets capable of binding small molecules.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2024
Decoding allostery at the atomic level is essential for understanding the relationship between a protein's sequence, structure, and dynamics. Recently, we have shown that decomposing temperature responses of inter-residue contacts can reveal allosteric couplings and provide useful insight into the functional dynamics of proteins. The details of this Chemically Accurate Contact Response Analysis (ChACRA) are presented here along with its application to two well-known allosteric proteins.
View Article and Find Full Text PDFThe fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N-methyladenosine (mA), N-methyladenosine (mA), 3-methylthymine (mT), and 3-methyluracil (mU) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species.
View Article and Find Full Text PDFThe catalytic cycle of Enzyme I (EI), a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate, is characterized by a series of local and global conformational rearrangements. This multistep process includes a monomer-to-dimer transition, followed by an open-to-closed rearrangement of the dimeric complex upon PEP binding. In the present study, we investigate the thermodynamics of EI dimerization using a range of high-pressure solution NMR techniques complemented by SAXS experiments.
View Article and Find Full Text PDFSubstrate-support interactions play an important role in the catalytic hydrogenation of phenolic compounds by ceria-supported palladium (Pd/CeO). Here, we combine surface contrast solution NMR methods and reaction kinetic assays to investigate the role of substrate-support interactions in phenol (PhOH) hydrogenation catalyzed by titania-supported palladium (Pd/TiO). We show that PhOH adsorbs on the catalyst a weak hydrogen-bonding interaction between the -OH group of the substrate and one oxygen atom on the support.
View Article and Find Full Text PDFTRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3.
View Article and Find Full Text PDFLarge-scale interdomain rearrangements are essential to protein function, governing the activity of large enzymes and molecular machineries. Yet, obtaining an atomic-resolution understanding of how the relative domain positioning is affected by external stimuli is a hard task in modern structural biology. Here, we show that combining structural modeling by AlphaFold2 with coarse-grained molecular dynamics simulations and NMR residual dipolar coupling data is sufficient to characterize the spatial domain organization of bacterial enzyme I (EI), a ∼130 kDa multidomain oligomeric protein that undergoes large-scale conformational changes during its catalytic cycle.
View Article and Find Full Text PDFTRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3.
View Article and Find Full Text PDFSubstrate selectivity is an important preventive measure to decrease the possibility of cross interactions between enzymes and metabolites that share structural similarities. In addition, understanding the mechanisms that determine selectivity towards a particular substrate increases the knowledge base for designing specific inhibitors for target enzymes. Here, we combine NMR, molecular dynamics (MD) simulations, and protein engineering to investigate how two substrate analogues, allylicphosphonate (cPEP) and sulfoenolpyruvate (SEP), recognize the mesophilic (eEIC) and thermophilic (tEIC) homologues of the receptor domain of bacterial Enzyme I, which has been proposed as a target for antimicrobial research.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Homologous enzymes with identical folds often exhibit different thermal and kinetic behaviors. Understanding how an enzyme sequence encodes catalytic activity at functionally optimal temperatures is a fundamental problem in biophysics. Recently it was shown that the residues that tune catalytic activities of thermophilic/mesophilic variants of the C-terminal domain of bacterial enzyme I (EIC) are largely localized within disordered loops, offering a model system with which to investigate this phenomenon.
View Article and Find Full Text PDFCharacterization of dynamic processes occurring at the nanoparticle (NP) surface is crucial for developing new and more efficient NP catalysts and materials. Thus, a vast amount of research has been dedicated to developing techniques to characterize sorption equilibria. Over recent years, solution NMR spectroscopy has emerged as a preferred tool for investigating ligand-NP interactions.
View Article and Find Full Text PDFAlkbh5 catalyzes demethylation of the -methyladenosine (mA), an epigenetic mark that controls several physiological processes including carcinogenesis and stem cell differentiation. The activity of Alkbh5 comprises two coupled reactions. The first reaction involves decarboxylation of α-ketoglutarate (αKG) and formation of a Fe═O species.
View Article and Find Full Text PDFEnzyme I (EI) of the bacterial phosphotransferase system (PTS) is a master regulator of bacterial metabolism and a promising target for development of a new class of broad-spectrum antibiotics. The catalytic activity of EI is mediated by several intradomain, interdomain, and intersubunit conformational equilibria. Therefore, in addition to its relevance as a drug target, EI is also a good model for investigating the dynamics/function relationship in multidomain, oligomeric proteins.
View Article and Find Full Text PDFEnzyme I (EI) is a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate. This reaction initiates a five-step phosphorylation cascade in the bacterial phosphotransferase (PTS) transduction pathway. Under physiological conditions, EI exists in an equilibrium between a functional dimer and an inactive monomer.
View Article and Find Full Text PDFProtein conformational dynamics play fundamental roles in regulation of enzymatic catalysis, ligand binding, allostery, and signaling, which are important biological processes. Understanding how the balance between structure and dynamics governs biological function is a new frontier in modern structural biology and has ignited several technical and methodological developments. Among these, CPMG relaxation dispersion solution NMR methods provide unique, atomic-resolution information on the structure, kinetics, and thermodynamics of protein conformational equilibria occurring on the µs-ms timescale.
View Article and Find Full Text PDFSurface contrast solution NMR methods (scNMR) are emerging as powerful tools to investigate the adsorption of small molecule ligands to the surface of nanoparticles (NP), returning fundamental insight into the kinetics and thermodynamics of sorption, as well as structural information on the adsorbed species. A prerequisite for the acquisition of high quality solution NMR data is the preparation of homogeneous and stable samples that return consistent NMR spectra and allow extensive signal averaging. Unfortunately, this condition does not apply to NMR samples containing NPs that often show a tendency to sediment and accumulate at the bottom of the NMR tube over the course of the experiment.
View Article and Find Full Text PDFhnRNPA2 is a major component of mRNA transport granules in oligodendrocytes and neurons. However, the structural details of how hnRNPA2 binds the A2 recognition element (A2RE) and if this sequence stimulates granule formation by enhancing phase separation of hnRNPA2 has not yet been studied. Using solution NMR and biophysical studies, we find that each of the two individual RRMs retain the domain structure observed in complex with RNA but are not rigidly confined (i.
View Article and Find Full Text PDFEnzyme I (EI), which is the key enzyme to activate the bacterial phosphotransferase system, plays an important role in the regulation of several metabolic pathways and controls the biology of bacterial cells at multiple levels. The conservation and ubiquity of EI among different types of bacteria makes the enzyme a potential target for antimicrobial research. Here, we use NMR-based fragment screening to identify novel inhibitors of EI.
View Article and Find Full Text PDFConformational disorder is emerging as an important feature of biopolymers, regulating a vast array of cellular functions, including signaling, phase separation, and enzyme catalysis. Here we combine NMR, crystallography, computer simulations, protein engineering, and functional assays to investigate the role played by conformational heterogeneity in determining the activity of the C-terminal domain of bacterial Enzyme I (EIC). In particular, we design chimeric proteins by hybridizing EIC from thermophilic and mesophilic organisms, and we characterize the resulting constructs for structure, dynamics, and biological function.
View Article and Find Full Text PDFProtein-protein interactions and the complexes thus formed are critical elements in a wide variety of cellular events that require an atomic-level description to understand them in detail. Such complexes typically constitute challenging systems to characterize and drive the development of innovative biophysical methods. NMR spectroscopy techniques can be applied to extract atomic resolution information on the binding interfaces, intermolecular affinity, and binding-induced conformational changes in protein-protein complexes formed in solution, in the cell membrane, and in large macromolecular assemblies.
View Article and Find Full Text PDFVarious fusion tags are commonly employed to increase the heterologous expression and solubility of aggregation-prone proteins within Escherichia coli. Herein, we present a protocol for efficient recombinant expression and purification of the human RNA demethylases Alkbh5 and FTO. Our method incorporates a novel fusion tag (the N-terminal domain of bacterial enzyme I, EIN) that dramatically increases the solubility of its fusion partner and is promptly removed upon digestion with a protease.
View Article and Find Full Text PDF