Publications by authors named "Vincenzo Titone"

In the current context, the use of fillers derived from fruit and vegetable waste is a crucial approach to mitigate waste and promote sustainable resource use, thus contributing to product life cycle completion and the achievement of sustainability goals. This study focuses on incorporating an endemic waste hitherto considered irrelevant within a biodegradable matrix. The resulting biocomposites were carefully characterized mechanically, rheologically, and morphologically to identify the connections between processability, structure, and properties.

View Article and Find Full Text PDF

Over the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. In this regard, this study focuses on the influence of a compatibilizer rubber on a nanocomposite incorporating graphene nanoparticles (GNPs), with a polymer matrix based on a blend of polypropylene (PP) and polyethylene terephthalate (PET). This effect has been investigated on both isotropic samples and on anisotropic/spun fiber samples.

View Article and Find Full Text PDF

Anything that is not recycled and/or recovered from waste represents a loss of raw materials. Recycling plastics can help to reduce this loss and to reduce greenhouse gases, improving the goal of the decarbonization of plastic. While the recycling of single polymers is well assessed, the recycling of mixed plastics is very difficult because of the strong incompatibility among the different polymers usually present in urban waste.

View Article and Find Full Text PDF

Decarbonization of plastics is based on two main pillars: bio-based polymers and recycling. Mechanical recycling of biodegradable polymers could improve the social, economic and environmental impact of the use of these materials. In this regard, the aim of this study was to investigate whether concentrations of the same recycled biopolymer could significantly affect the rheological and mechanical properties of biodegradable monopolymer blends.

View Article and Find Full Text PDF

Lignin can be obtained as a byproduct during cellulose-rich pulp fibers production and it is habitually treated as waste or intended for low-value destinations. However, due to UV absorption and mechanical properties, lignin can contribute to the fabrication of biodegradable blown films with superior performances. In this study, it was established the suitability of lignin for manufacturing biocomposite PBAT blown films with higher stiffness and photo-oxidation resistance.

View Article and Find Full Text PDF

Biodegradable Mater-Bi (MB) composites reinforced with hazelnut shell (HS) powder were prepared in a co-rotating twin-screw extruder followed by compression molding and injection molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal and rheological properties of MB/HS biocomposites were studied. Rheological tests showed that the incorporation of HS significantly increased the viscosity of composites with non-Newtonian behavior at low frequencies.

View Article and Find Full Text PDF

The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer.

View Article and Find Full Text PDF

In this work, biocomposite blown films based on poly(butylene adipate-co-terephthalate) (PBAT) as biopolymeric matrix and biochar (BC) as filler were successfully fabricated. The materials were subjected to a film-blowing process after being compounded in a twin-screw extruder. The preliminary investigations conducted on melt-mixed PBAT/BC composites allowed PBAT/BC 5% and PBAT/BC 10% to be identified as the most appropriate formulations to be processed via film blowing.

View Article and Find Full Text PDF

This work investigates the effects of very small amounts of fumed silica on the morphology and on the rheological and mechanical behaviour of polypropylene nanocomposites and on their photo-oxidation behaviour. Polypropylene nanocomposites were prepared using a twin-screw corotating extruder with 0, 1 and 2 wt/wt% of SiO. Morphological, mechanical, thermomechanical and rheological properties were examined.

View Article and Find Full Text PDF

This study explores the processability, mechanical, and thermal properties of biocompostable composites based on poly (butylene adipate-co-terephthalate) (PBAT) as polymer matrix and microcrystalline cellulose (MCC) derived from softwood almond () shells (as-MCC) as filler at two different weight concentration, i.e., 10 wt% and 20 wt%.

View Article and Find Full Text PDF

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing.

View Article and Find Full Text PDF

Mechanical recycling is one of the possible ways to enhance the value of postconsumer plastic materials. However, the final performance of the recycled material will strongly depend on the quality of the selection made on the recycled product and on the degradation of the properties. In this context, the present study examines the effect of reprocessing for five successive extrusion cycles on the rheological, mechanical and thermal properties of a poly(butylene adipate-co-terephthalate) (PBAT)-based blend on samples reprocessed in both dry and wet conditions.

View Article and Find Full Text PDF