Publications by authors named "Vincenzo Puggioni"

D-amino acids research field has recently gained an increased interest since these atypical molecules have been discovered to play a plethora of different roles. In the mammalian central nervous system, d-aspartate (D-Asp) is critically involved in the regulation of glutamatergic neurotransmission by acting as an agonist of NMDA receptor. Accordingly, alterations in its metabolism have been related to different pathologies.

View Article and Find Full Text PDF

Microbial Molecular hydrogen (H) cycling plays an important role in several ecological niches. Hydrogenases (Hases), enzymes involved in H metabolism, are of great interest for investigating microbial communities, and producing BioH. To obtain an overall picture of the genetic ability of Cyanobacteria to produce Hases, we conducted a phylum wide analysis of the distribution of the genes encoding these enzymes in 130 cyanobacterial genomes.

View Article and Find Full Text PDF

The S enantiomer of allantoin is an intermediate of purine degradation in several organisms and the final product of uricolysis in nonhominoid mammals. Bioinformatics indicated that proteins of the Asp/Glu racemase superfamily could be responsible for the allantoin racemase (AllR) activity originally described in Pseudomonas species. In these proteins, a cysteine of the catalytic dyad is substituted with glycine, yet the recombinant enzyme displayed racemization activity with a similar efficiency (k/K ≈ 5 × 10 M s) for the R and S enantiomers of allantoin.

View Article and Find Full Text PDF

Background: Pyrethroids have been widely employed in order to control several agricultural pests, including Myzus persicae. Target-site resistance is the main mechanism that confers insensitivity to this class of compounds, and the most common amino acid substitutions are kdr (L1014F) and s-kdr (M918T), but recently another mutation in the s-kdr locus (M918L) has been described in French and Korean populations of M. persicae.

View Article and Find Full Text PDF

A major problem of genome annotation is the assignment of a function to a large number of genes of known sequences through comparison with a relatively small number of experimentally characterized genes. Because functional divergence is a widespread phenomenon in gene evolution, the transfer of a function to homologous genes is not a trivial exercise. Here, we show that a family of homologous genes which are found in purine catabolism clusters and have hypothetically equivalent functions can be divided into two distinct groups based on the genomic distribution of functionally related genes.

View Article and Find Full Text PDF

An opaque biochemical definition, an insufficient functional characterization, an interpolated database description, and a beautiful 3D structure with a wrong reaction. All these are elements of an exemplar case of misannotation in biological databases and confusion in the scientific literature concerning genes and enzymes acting on ureidoglycolate, an intermediate of purine catabolism. Here we show biochemical evidence for the relocation of genes assigned to EC 3.

View Article and Find Full Text PDF

While some organisms, including humans, eliminate oxidized purines to get rid of excess nitrogen, for many others the recovery of the purine ring nitrogen is vital. In the so-called ureide pathway, nitrogen is released as ammonia from allantoate through a series of reactions starting with allantoate amidohydrolase (AAH), a manganese-dependent enzyme found in plants and bacteria. We report NMR evidence that the true product of the AAH reaction is S-ureidoglycine, a nonstandard alpha-amino acid that spontaneously releases ammonia in vitro.

View Article and Find Full Text PDF