In the dynamic landscape of the Internet of Things (IoT), where smart devices are reshaping our world, nanomaterials can play a pivotal role in ensuring the IoT's sustainability. These materials are poised to redefine the development of smart devices, not only enabling cost-effective fabrication but also unlocking novel functionalities. As the IoT is set to encompass an astounding number of interconnected devices, the demand for environmentally friendly nanomaterials takes center stage.
View Article and Find Full Text PDFThe study of surface defects is one of the forefronts of halide perovskite research. In the nanoscale regime, where the surface-to-volume ratio is high, the surface plays a key role in determining the electronic properties of perovskites. Perovskite-inspired silver iodobismuthates are promising photovoltaic absorbers.
View Article and Find Full Text PDFLead-free perovskite-inspired materials (PIMs) are gaining attention in optoelectronics due to their low toxicity and inherent air stability. Their wide bandgaps (≈2 eV) make them ideal for indoor light harvesting. However, the investigation of PIMs for indoor photovoltaics (IPVs) is still in its infancy.
View Article and Find Full Text PDFThe development of ultralow-power and easy-to-fabricate electronics with potential for large-scale circuit integration (.., complementary or complementary-like) is an outstanding challenge for emerging off-the-grid applications, .
View Article and Find Full Text PDFIn recent years, solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications. In particular, silver-bismuth-halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements. This study investigates the potential of AgBiI for near-infrared (NIR)-blind visible light photodetection, which is critical to emerging applications (e.
View Article and Find Full Text PDFSilver ink is the most widely used conductive material for printing electrodes in the fabrication of all-printed ion gel gated transistors because of their high conductivity and low cost. However, electrochemical instability of printed silver electrodes is generally one of the biggest issues, whether it is in air where silver gets oxidized or in a moisture environment where electrochemical migration occurs. Notwithstanding, the electrochemical stability of printed silver electrodes in ion gel medium has not been studied so far.
View Article and Find Full Text PDFA self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs.
View Article and Find Full Text PDFThe last decade has witnessed the rapid development of inkjet printing as an attractive bottom-up microfabrication technology due to its simplicity and potentially low cost. The wealth of printable materials has been key to its widespread adoption in organic optoelectronics and biotechnology. However, its implementation in nanophotonics has so far been limited by the coarse resolution of conventional inkjet-printing methods.
View Article and Find Full Text PDFSolution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation.
View Article and Find Full Text PDFThe fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics.
View Article and Find Full Text PDFA method based on scanning Kelvin probe microscopy is developed to probe the effects of minority carriers on the switching characteristics of organic field-effect transistors. The mobility of the minority carriers is extracted and the role they play in screening of the gate potential in the OFF state and in recombination of trapped majority carriers trapped after an ON state is understood.
View Article and Find Full Text PDFConjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied. However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder.
View Article and Find Full Text PDFA general semiconductor-independent two-dimensional character of the carrier distribution in top-gate polymer field-effect transistors is revealed by analysing temperature-dependent transfer characteristics and the sub-bandgap absorption tails of the polymer semiconductors. A correlation between the extracted width of the density of states and the Urbach energy is presented, corroborating the 2D accumulation layer and demonstrating an intricate connection between optical measurements concerning disorder and charge transport in transistors.
View Article and Find Full Text PDF