Publications by authors named "Vincenzo Mirenda"

Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications.

View Article and Find Full Text PDF

Background: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems.

View Article and Find Full Text PDF

Increased arterial stiffness, as estimated from aortic pulse wave velocity (Ao-PWV), and albuminuria are independent predictors for cardiovascular disease in type 2 diabetes mellitus (T2DM). Whether angiotensin receptor blockers (ARBs), drugs with cardio-renal protective effects, improve Ao-PWV to a greater extent than other equipotent antihypertensive medications remains unclear. After a 4-week washout phase, we compared the effects of valsartan (n=66), an ARB, with that of amlodipine (n=65), a calcium channel blocker on Ao-PWV in 131 T2DM patients with pulse pressure (PP) >or=60 mm Hg and raised albumin excretion rate (AER) in a 24-week randomized, double-blind, parallel group study.

View Article and Find Full Text PDF

T-cell-receptor triggering and the delivery of co-stimulation are essential events leading to T cell expansion, differentiation and effector function. The influence that such signals exert on T cell migration during and following priming has been highlighted by recent reports. Moreover, induction of peripheral tolerance might act in part by affecting T cell migration.

View Article and Find Full Text PDF

The human type I Interferon (IFN) family includes 14 closely related cytokines that are produced in response to viral and bacterial infections and mediate the progress of innate immune responses to adaptive immune protection, bind to a common receptor, and have qualitatively similar biologic activities. We have shown previously that IFN-alpha2 can induce human T cell chemotaxis, suggesting that type I IFNs may contribute to the development of an inflammatory environment. We here report that, in addition to promoting T cell chemotaxis, IFN-alpha2 enhances T cell adhesion to integrin ligands, which is associated with integrin clustering on the T cell surface and enhanced conjugate formation with dendritic cells.

View Article and Find Full Text PDF

Productive T-cell immunity requires both the activation and the migration of specific T cells to the antigenic tissue. The costimulatory molecule CD28 plays an essential role in the initiation of T-cell-mediated immunity. We investigated the possibility that CD28 may also regulate migration of primed T cells to target tissue.

View Article and Find Full Text PDF

Based on our previous observation that anergic T lymphocytes lose their migratory ability in vitro, we have proposed that anergic T cells are retained in the site where they have been generated to exert their regulatory function. In this study we have analyzed T lymphocyte trafficking and motility following the induction of tolerance in vivo. In a model of non-deletional negative vaccination to xenoantigens in which dendritic cells (DC) localize to specific lymphoid sites depending on the route of administration, tolerant T cells remained localized in the lymph nodes colonized by tolerogenic DC, while primed T cells could traffic efficiently.

View Article and Find Full Text PDF

Recent success in pancreatic islet allotransplantation has raised expectations but has equally highlighted the acute shortage of donor tissue. The use of xenogeneic tissue would help to address this shortage; however, strong cellular immunity limits the application of this approach. T-cell responses to xenogeneic tissues involve recognition of intact species-mismatched major histocompatibility complex (MHC) molecules, the direct pathway, and xenogeneic proteins presented as peptides by responder-type MHC molecules, the indirect pathway.

View Article and Find Full Text PDF

A feature of the tolerance that has been described in experimental models is that it can be transferred by CD4+ T cells to a naive recipient. Described is a novel approach to induce indirect pathway regulatory T cells in a rat model that exploits the natural processing and presentation of major histocompatability complex (MHC) molecules as peptide by the MHC class II molecules of the same cell. Dendritic cells (DC) coexpressing donor (AUG) and recipient (LEW) MHC molecules were rendered tolerogenic by treatment with dexamethasone.

View Article and Find Full Text PDF