Introduction: Type 2 diabetes mellitus (T2DM) is a relevant risk factor for severe forms of COVID-19 (SARS coronavrus 2 [SARS-CoV-2] disease 2019), and calls for caution because of the high prevalence of T2DM worldwide and the high mortality rates observed in patients with T2DM who are infected with SARS-CoV-2. People with T2DM often take dipeptidyl peptidase-4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1ras), or sodium-glucose co-transporter-2 inhibitors (SGLT-2is), all of which have clear anti-inflammatory effects. The study aimed to compare (i) the severity and duration of hospital stay between patients with T2DM categorized by pre-hospitalization drug class utilization and (ii) the COVID-19-related death rates of those three groups.
View Article and Find Full Text PDFNovel antidiabetic drugs have the ability to produce anti-inflammatory effects regardless of their glucose-lowering action. For this reason, these molecules (including GLP-1 RAs and DPP-4is) were hypothesized to be effective against COVID-19, which is characterized by cytokines hyperactivity and multiorgan inflammation. The aim of our work is to explore the potential protective role of GLP-1 RAs and DPP-4is in COVID-19 (with the disease intended to be a model of an acute stressor) and non-COVID-19 patients over a two-year observation period.
View Article and Find Full Text PDFAfter examining the complex interplay between heart failure (HF) in its various clinical forms, metabolic disorders like nonalcoholic fatty liver disease (NAFLD), and obstructive sleep apnea (OSA) syndrome, in this mini-review we described possible favorable effects of sodium-glucose cotransporter 2 inhibitors (SGLT2is) on HF with preserved (i.e., ≥ 50%) ejection fraction (HFpEF) through enhanced cardiorenal function and visceral-subcutaneous body fat redistribution.
View Article and Find Full Text PDFObstructive sleep apnoea (OSA) is characterized by frequent apnoea episodes during sleep due to upper airway obstruction. The present review summarizes current knowledge on inter-relationships between OSA and type 2 diabetes mellitus (T2DM) and suggests the former as a possible target for sodium-glucose co-transporter-2 inhibitors (SGLT-2i). Based on pathophysiological mechanisms underlying OSA onset and renal SGLT-2 effects, we suggest that SGLT-2i indications might expand beyond current ones, including glucose, lipids, uric acid, blood pressure, and body weight control as well as chronic heart failure and kidney disease prevention.
View Article and Find Full Text PDFMammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons.
View Article and Find Full Text PDFObjective: New incretin-mimetics increased the treatment options for type 2 diabetes mellitus. Studies on the safety of incretin-based therapy showed a risk of hypersensitivity reactions, acute pancreatitis, renal failure, infection, thyroid and pancreas cancer. We contributed to safety assessment of these new drugs by evaluating the spontaneous adverse drug reactions (ADRs) reporting in Italy.
View Article and Find Full Text PDF