Torularhodin is a dark pink colored carotenoid belonging to the xanthophylls group that can be biologically synthesized by red yeasts, especially by Rhodotorula and Sporobolomyces genera. The growing interest in this molecule is due to its biological activities such as antioxidant, anticholesterolemic, anti-inflammatory, antimicrobial, and anticancer. To satisfy potential commercial markets, numerous methods have been proposed to develop a cost-effective and environmentally friendly downstream process for the purification of torularhodin.
View Article and Find Full Text PDFThe aim of this study was to develop an effective integrated cultivation system for as a source of bioactive compounds such as astaxanthin, lutein, proteins, and fatty acids (FAs). The Chlorophyta was cultivated in a vertical bubble column photobioreactor (VBC-PBR) under batch mode, allowing switching from green to red phase for astaxanthin induction. The combined effect of light intensity and nutrients on bioactive compound formation was investigated.
View Article and Find Full Text PDFIn this article, microalgae sp. was used for fatty acid (FA) extraction, using a supercritical fluid-carbon dioxide (SF-CO) extraction method. This study investigated the influence of different pre-treatment conditions by varying the grinding speed (200-600 rpm), pre-treatment time (2.
View Article and Find Full Text PDFLutein has several benefits for human health, playing an important role in the prevention of age-related macular degeneration (AMD), cataracts, amelioration of the first stages of atherosclerosis, and some types of cancer. In this work, the microalga was used as a natural source for the supercritical fluid (SF) extraction of lutein. For this purpose, the optimization of the main parameters affecting the extraction, such as biomass pre-treatment, temperature, pressure, and carbon dioxide (CO₂) flow rate, was performed.
View Article and Find Full Text PDFThis research shows that carbon dioxide supercritical fluid (CO₂-SF) is an emerging technology for the extraction of high interest compounds for applications in the manufacturing of pharmaceuticals, nutraceuticals, and cosmetics from microalgae. The purpose of this study is to recover fatty acids (FAs) and, more precisely, eicosapentaenoic acid (EPA) from biomass by CO₂-SF extraction. In the paper, the effect of mechanical pre-treatment was evaluated with the aim of increasing FAs recovery.
View Article and Find Full Text PDFAstaxanthin and lutein, antioxidants used in nutraceutics and cosmetics, can be extracted from several microalgal species. In this work, investigations on astaxanthin and lutein extraction from () in the red phase were carried out by means of the supercritical fluid extraction (SFE) technique, in which CO₂ supercritical fluid was used as the extracting solvent with ethanol as the co-solvent. The experimental activity was performed using a bench-scale reactor in semi-batch configuration with varying extraction times (20, 40, 60, and 80 min), temperatures (50, 65, and 80 °C) and pressures (100, 400, and 550 bar).
View Article and Find Full Text PDFmicroalgae in the red phase can produce significant amounts of astaxanthin, lutein, and fatty acids (FAs), which are valuable antioxidants in nutraceutics and cosmetics. Extraction of astaxanthin, lutein, and FAs from disrupted biomass of the red phase using carbon dioxide (CO₂) in supercritical fluid extraction (SFE) conditions was investigated using a bench-scale reactor in a semi-batch configuration. In particular, the effect of extraction time (20, 40, 60, 80, and 120 min), CO₂ flow rate (3.
View Article and Find Full Text PDFSolvent Extraction was tested to extract astaxanthin from Haematococcus pluvialis in red phase (HPR), by investigating effects of solvents, extraction pressure and temperature. Astaxanthin isomers were identified and quantified in the extract. The performances of acetone and ethanol, Generally Recognized As Safe (GRAS) solvents, were explored.
View Article and Find Full Text PDF