Publications by authors named "Vincenzo Guarcello"

Optical coherence tomography (OCT) may revolutionize fundamental investigation and clinical management of age-related macular degeneration and other eye diseases. However, quantitative OCT interpretation is hampered due to uncertain sub-cellular correlates of reflectivity in the retinal pigment epithelium (RPE) and photoreceptor. The purpose of this study was twofold: 1) to test OCT correlates in the RPE, and 2) to demonstrate the feasibility of longitudinal OCT monitoring of sub-cellular RPE dynamics.

View Article and Find Full Text PDF

Objective: Approximately 30-40% of grade III-IV toxicity to 5-FU has been associated with partial or profound deficiency in dihydropyrimidine dehydrogenase (DPD), the first of three enzymes in the catabolic pathway of fluoropyrimidines. There remains, however, a subset of patients presenting with 5-FU-associated toxicity despite normal DPD activity, suggesting possible deficiencies in enzymes downstream of DPD: dihydropyrimidinase (DHP), encoded by the DPYS gene, and/or beta-ureidopropionase (BUP-1), encoded by the UPB1 gene. Previously, we reported the identification of inactivating mutations in the DPYS gene that could potentially alter the uracil catabolic pathway in healthy individuals with normal DPD enzyme activity.

View Article and Find Full Text PDF

Objective: Dihydropyrimidine dehydrogenase (DPD) deficiency accounts for approximately 43% of grade 3-4 toxicity to 5-fluorouracil. There, however, remain a number of patients presenting with 5-fluorouracil-associated toxicity despite normal DPD enzyme activity, suggesting possible deficiencies in dihydropyrimidinase (DHP), encoded by the DPYS gene, and/or beta-ureidopropionase (BUP-1), encoded by the UPB1 gene. This study investigates the role of DPYS sequence variations in individuals with unexplained molecular basis of altered uracil catabolism.

View Article and Find Full Text PDF

Dihydropyrimidine dehydrogenase (DPD) is one of the factors that determine the efficacy and toxicity of 5-fluorouracil. Variations in DPD activity may result from alterations at the transcriptional level of the DPYD gene. Heterogeneity in DPYD expression has been reported, but the molecular mechanisms responsible for this remain unclear.

View Article and Find Full Text PDF

CD4(+)CD25(+) regulatory T cells (Tregs) play an important role in allograft and self-tolerance and thus have potential therapeutic application in transplantation, autoimmunity, and allergy. Although nonhuman primate (NHP) provide the most accepted preclinical models for translational studies in allograft tolerance and infectious diseases, CD4(+)CD25(+) Tregs have been rarely studied in NHP. The low frequencies of Tregs in peripheral blood will likely necessitate ex vivo expansion to enable Tregs adaptive immune therapy in NHP and humans.

View Article and Find Full Text PDF

Dihydropyrimidine dehydrogenase (DPD), the initial and rate-limiting enzyme in the 5-fluorouracil (5-FU) catabolic pathway, has been implicated as one of the factors determining the efficacy and toxicity of the anticancer agent 5-FU. Studies have attributed variation in DPD activity partially to alterations at the transcriptional level of DPYD gene. We investigated the transcription factors implicated in the constitutive expression of DPYD by utilizing a 174-bp fragment of the DPYD promoter region in which three consensus Sp protein binding sites (SpA, SpB and SpC) were predicted.

View Article and Find Full Text PDF

Toxoplasma gondii is the most common cause of secondary CNS infections in immunocompromised persons such as AIDS patients. The major route of adenosine metabolism in T. gondii is direct phosphorylation to adenosine 5'-monophosphate (AMP) catalyzed by the enzyme adenosine kinase (EC 2.

View Article and Find Full Text PDF

Activity of the independently regulated human c-myc P0 promoter has been associated with the undifferentiated status of leukemia cells as well as the hormone-independent proliferation of breast cancer cells. The P0 transcript is distinguished from the predominant P1 and P2 c-myc mRNAs by an approximately 639-nucleotide extension of the 5'-untranslated region. We hypothesized that this complex 5'-untranslated RNA sequence unique to the P0 transcript may contribute significantly to the composite regulation of the c-myc locus and that enforced intracellular synthesis of the isolated P0 5'-UTR, out of its native sequence context, might amplify or dominantly interfere with its normal regulatory function.

View Article and Find Full Text PDF