The problem of a vertical electric dipole radiating above a periodic multilayer whose unit cell comprises a layer of a topological insulator (TI) and a columnar thin film (CTF) was solved in order to investigate the left/right asymmetry of the total electric field in the far zone in the half-space containing the dipole. Occurring in a wide range of the polar observation angle, the left/right asymmetry of E is due to both the CTFs and the TI layers. Occurring in a narrow range of the polar observation angle, the left/right asymmetry of E is entirely due to the TI layers.
View Article and Find Full Text PDFVery weak left/right asymmetry in reflection and transmission is offered by a layer of a topological insulator on top of a layer of an anisotropic dielectric material, but it can be enhanced very significantly by using a periodic multilayer of both types of materials. This is an attractive prospect for realizing one-way terahertz devices, because both types of materials can be grown using standard physical-vapor-deposition techniques.
View Article and Find Full Text PDFMultifrequency numerical simulations of the light-coupling efficiency of a prismatic bioinspired compound lens (BCL) of silicon atop a thick silicon substrate were carried out within the framework of geometrical optics. Comparison was made with untextured and groove-textured silicon substrates as well as with untextured silicon substrates with a double-layer anti-reflection (DLAR) coating. Taking into account the broadband nature and the sea-level spectral irradiance of the insolation flux, and averaging over all admissible directions and both linear polarization states of the incident light, we found that the light-coupling efficiency can be almost doubled with respect to the untextured silicon substrate and enhanced by about a third with respect to a DLAR-coated untextured silicon substrate, by adopting a DLAR-coated silicon BCL.
View Article and Find Full Text PDFInspired by the apposition compound eyes of many dipterans, we formulated a fractal scheme to design prismatic lenses to improve the performance of silicon solar cells. We simulated the absorption of light, both directly illuminating and diffuse, using the geometrical-optics approximation. We found that properly designed bioinspired compound lenses (BCLs) can significantly improve the light-harvesting capabilities of silicon solar cells.
View Article and Find Full Text PDF