Publications by authors named "Vincenzo Dentamaro"

Parkinson's is the second most common neurodegenerative disease, affecting nearly 8.5M people and steadily increasing. In this research, Multimodal Deep Learning is investigated for the Prodromal stage detection of Parkinson's Disease (PD), combining different 3D architectures with the novel Excitation Network (EN) and supported by Explainable Artificial Intelligence (XAI) techniques.

View Article and Find Full Text PDF

Background: Recent enhancements in Large Language Models (LLMs) such as ChatGPT have exponentially increased user adoption. These models are accessible on mobile devices and support multimodal interactions, including conversations, code generation, and patient image uploads, broadening their utility in providing healthcare professionals with real-time support for clinical decision-making. Nevertheless, many authors have highlighted serious risks that may arise from the adoption of LLMs, principally related to safety and alignment with ethical guidelines.

View Article and Find Full Text PDF

Deep learning (DL) has been demonstrated to be a valuable tool for analyzing signals such as sounds and images, thanks to its capabilities of automatically extracting relevant patterns as well as its end-to-end training properties. When applied to tabular structured data, DL has exhibited some performance limitations compared to shallow learning techniques. This work presents a novel technique for tabular data called adaptive multiscale attention deep neural network architecture (also named excited attention).

View Article and Find Full Text PDF

Background And Objective: Neurodegenerative diseases are the most frequent age-related diseases. This type of disease, if not discovered in the initial stage, will compromise the quality of life of the affected subject. Thus, a timely diagnosis is of paramount importance.

View Article and Find Full Text PDF

This study presents the Auditory Cortex ResNet (AUCO ResNet), it is a biologically inspired deep neural network especially designed for sound classification and more specifically for Covid-19 recognition from audio tracks of coughs and breaths. Differently from other approaches, it can be trained end-to-end thus optimizing (with gradient descent) all the modules of the learning algorithm: mel-like filter design, feature extraction, feature selection, dimensionality reduction and prediction. This neural network includes three attention mechanisms namely the squeeze and excitation mechanism, the convolutional block attention module, and the novel sinusoidal learnable attention.

View Article and Find Full Text PDF

This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegenerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis.

View Article and Find Full Text PDF

Automatic traffic flow classification is useful to reveal road congestions and accidents. Nowadays, roads and highways are equipped with a huge amount of surveillance cameras, which can be used for real-time vehicle identification, and thus providing traffic flow estimation. This research provides a comparative analysis of state-of-the-art object detectors, visual features, and classification models useful to implement traffic state estimations.

View Article and Find Full Text PDF