Introduction: Asymmetric electromyographic (EMG) activity during teeth clenching has been linked to cognitive impairment, as evaluated by the Spinnler-Tognoni matrices test, and to asymmetric pupil size (anisocoria). Anisocoria indicates an asymmetric Locus Coeruleus activity, leading to an asymmetric hemispheric excitability worsening cognitive performance. Bite splint wearing corrects EMG asymmetry, reduces anisocoria and improves cognitive performance.
View Article and Find Full Text PDFChewing improves visuospatial performance through locus coeruleus (LC) activation. The effects of bilateral and unilateral mastication were investigated in subjects showing different degrees of asymmetry in masseter electromyographic (EMG) activity during clenching and in pupil size at rest (anisocoria), which is a proxy of LC imbalance. Correlations between performance changes and asymmetry values were found in males, but not in females.
View Article and Find Full Text PDFThe effects of postural training on postural stability and vestibulospinal reflexes (VSRs) were investigated in normal subjects. A period (23 minutes) of repeated episodes (n = 10, 50 seconds) of unipedal stance elicited a progressive reduction of the area covered by centre of pressure (CoP) displacement, of average CoP displacement along the X and Y axes and of CoP velocity observed in this challenging postural task. All these changes were correlated to each other with the only exception of those in X and Y CoP displacement.
View Article and Find Full Text PDFChewing improves cognitive performance, which is impaired in subjects showing an asymmetry in electromyographic (EMG) masseter activity during clenching. In these subjects, the simultaneous presence of an asymmetry in pupil size (anisocoria) at rest indicates an imbalance in Ascending Reticular Activating System (ARAS) influencing arousal and pupil size. The aim of the present study was to verify whether a trigeminal EMG asymmetry may bias the stimulating effect of chewing on cognition.
View Article and Find Full Text PDFTrigeminal input exerts acute and chronic effects on the brain, modulating cognitive functions. Here, new data from humans and animals suggest that these effects are caused by trigeminal influences on the Locus Coeruleus (LC). In humans subjects clenching with masseter asymmetric activity, occlusal correction improved cognition, alongside with reductions in pupil size and anisocoria, proxies of LC activity and asymmetry, respectively.
View Article and Find Full Text PDFIt has been observed that, in patients affected by temporomandibular disorders (TMDs) and edentulism, a left-right asymmetry in electromyographic (EMG) activity of masseter muscles during clenching and in pupil size at rest (anisocoria) is present. Both are greatly reduced by an orthotic-prosthetic correction. In parallel, the correction significantly improves cognitive performance.
View Article and Find Full Text PDFCurrent scientific literature provides evidence that trigeminal sensorimotor activity associated with chewing may affect arousal, attention, and cognitive performance. These effects may be due to widespread connections of the trigeminal system to the ascending reticular activating system (ARAS), to which noradrenergic neurons of the locus coeruleus (LC) belongs. LC neurons contain projections to the whole brain, and it is known that their discharge co-varies with pupil size.
View Article and Find Full Text PDFIn order to assess possible influences of occlusion on motor performance, we studied by functional magnetic resonance imaging (fMRI) the changes in the blood oxygenation level dependent (BOLD) signal induced at brain level by a finger to thumb motor task in a population of subjects characterized by an asymmetric activation of jaw muscles during clenching (malocclusion). In these subjects, appropriate occlusal correction by an oral orthotic (bite) reduced the masticatory asymmetry. The finger to thumb task was performed while the subject's dental arches were touching, in two conditions: (a) with the teeth in direct contact (Bite OFF) and (b) with the bite interposed between the arches (Bite ON).
View Article and Find Full Text PDFIt is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action.
View Article and Find Full Text PDFTrigeminal input to the ascending activating system is important for the maintenance of arousal and may affect the discharge of the noradrenergic neurons of the (LC), whose activity influences both vigilance state and pupil size, inducing mydriasis. For this reason, pupil size evaluation is now considered an indicator of LC activity. Since mastication activates trigeminal afferent neurons, the aims of the present study, conducted on healthy adult participants, were to investigate whether chewing a bolus of different hardness may: (1) differentially affect the performance on a cognitive task (consisting in the retrieval of specific target numbers within numerical matrices) and (2) increase the dilatation of the pupil (mydriasis) induced by a haptic task, suggesting a change in LC activation.
View Article and Find Full Text PDFSeveral studies have demonstrated that chewing can be regarded as a preventive measure for cognitive impairment, whereas masticatory deficiency, associated with soft-diet feeding, is a risk factor for the development of dementia. At present the link between orofacial sensorimotor activity and cognitive functions is unknown. In subjects with unilateral molar loss we have shown asymmetries in both pupil size and masticatory muscles electromyographic (EMG) activity during clenching: the molar less side was characterized by a lower EMG activity and a smaller pupil.
View Article and Find Full Text PDFWe studied whether patients affected by Temporo-Mandibular Disorder (TMD), showing asymmetric electromyographic (EMG) activity of masticatory muscles also display asymmetries in pupil size. In 30 pain free TMD patients a highly significant, positive correlation was found between left-right differences in EMG and pupil size. The asymmetry in pupil size was induced by the asymmetric sensorimotor signals arising from the orofacial region, since pupils became of about the same size following orthotic correction, which greatly reduced the EMG asymmetry.
View Article and Find Full Text PDFIntroduction: A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics.
View Article and Find Full Text PDFIntroduction: The presented patient, affected by Alzheimer's disease, underwent neuropsychological evaluation and functional magnetic resonance imaging investigation under occlusal proprioceptive un-balance and re-balance conditions. Saccadic and pupillometric video-oculographic examinations were performed in order to detect connected trigeminal proprioceptive motor patterns able to interfere with reticular formation cerebellum functions linked to visual and procedural processes prematurely altered in Alzheimer's disease.
Case Presentation: A 66-year-old Caucasian man, affected by Alzheimer's disease and with a neuropsychological evaluation issued by the Alzheimer's Evaluation Unit, underwent an electromyographic investigation of the masseter muscles in order to assess their functional balance.
ABSTRACT Contamination of apples (Malus domestica) and derived juices with fungicide residues and patulin produced by Penicillium expansum are major issues of food safety. Biocontrol agents represent an alternative or supplement to chemicals for disease control. Our data show that these microbes could also contribute to actively decreasing patulin accumulation in apples.
View Article and Find Full Text PDFABSTRACT We detected the generation of the reactive oxygen species (ROS) superoxide anion ( O.(-) (2)) and hydrogen peroxide (H(2)O(2)) in apple wounds 2 immediately after wounding, and assessed the relationships between (i) timely colonization of apple wounds by biocontrol yeasts, (ii) resistance of these microorganisms to oxidative stress caused by ROS, and (iii) their antagonism against postharvest wound pathogens. We analyzed a model system consisting of two yeasts with higher (Cryptococcus laurentii LS-28) or lower (Rhodotorula glutinis LS-11) antagonistic activity against the postharvest pathogens Botrytis cinerea and Penicillium expansum.
View Article and Find Full Text PDF