When superparamagnetic nanoparticles (MAG) are loaded within microcarriers of thermosensitive and injectable biopolymers, "smart" microdevices are obtained: they respond to an external magnetic field through the release of any co-encapsulated molecules with a remote on-off control. Creating reliable and effective fabrication technologies for the production of these smart nano/microdevices remains a challenge. In this work, supercritical emulsion extraction technology is proposed for the fabrication of microcapsules with a core of poly-lactic-co-glycolic acid (PLGA) or polylactic acid (PLA) covered by carboxybetaine-functionalized chitosan (f-chi) and loaded with MAG (mean size of 6.
View Article and Find Full Text PDFSupercritical emulsion extraction (SEE) is proposed as a green and effective strategy for the fabrication of chitosan-covered poly-lactic-co-glycolic acid (chi-PLGA) injectable microcapsules for the controlled release of teriparatide (THA) and teriparatide/gentamicin sulfate (THA/Gen). These formulations can be used for locally bone pathologies treatment or in complex fracture healing of aged patients. Several oil-water (o-w) and water-oil-water (w-o-w) emulsions were processed by SEE to produce multifunctional microcapsules containing hydroxyapatite (HA) within a poly-lactic-co-glycolic acid (PLGA) matrix (up to 24 mg/g) and with both THA (0.
View Article and Find Full Text PDF