Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several wavelets families (so called kernels) are able to generate different multi-resolution representations of the original image, and which of them produces more salient images is not yet clear.
View Article and Find Full Text PDFThe Special Issue "Advanced Computational Methods for Oncological Image Analysis", published for the , covered original research papers about state-of-the-art and novel algorithms and methodologies, as well as applications of computational methods for oncological image analysis, ranging from radiogenomics to deep learning [...
View Article and Find Full Text PDFMany studies have shown that epicardial fat is associated with a higher risk of heart diseases. Accurate epicardial adipose tissue quantification is still an open research issue. Considering that manual approaches are generally user-dependent and time-consuming, computer-assisted tools can considerably improve the result repeatability as well as reduce the time required for performing an accurate segmentation.
View Article and Find Full Text PDFBackground: The current methodology for the Surviving Fraction (SF) measurement in clonogenic assay, which is a technique to study the anti-proliferative effect of treatments on cell cultures, involves manual counting of cell colony forming units. This procedure is operator-dependent and error-prone. Moreover, the identification of the exact colony number is often not feasible due to the high growth rate leading to the adjacent colony merging.
View Article and Find Full Text PDF