Objective: To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer.
Methods: From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis.
Objective: To analyze dosimetric data of a single center by a radiation dose index monitoring software evaluating quantitatively the dose reduction obtained with the implementation of the adaptive statistical iterative reconstruction (ASIR) on Computed Tomography in terms of both the value of the dose length product (DLP) and the alerts provided by the dose tool.
Methods: Dosimetric quantities were acquired using Qaelum DOSE tool (QAELUM NV, Leuven-Heverlee, Belgium). Dose data pertaining to CT examinations were performed using a General Electric Healthcare CT tomography with 64 detectors.
Purpose: The purpose of this study is to assess Blood oxygenation level dependent Magnetic Resonance Imaging (BOLD-MRI) and Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) in the differentiation of benign and malignant breast lesions.
Methods: Fifty-nine breast lesions (26 benign and 33 malignant lesions) pathologically proven in 59 patients were included in this retrospective study. As BOLD parameters were estimated basal signal S and the relaxation rate R2*, diffusion and perfusion parameters were derived by DWI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp) and tissue diffusivity (Dt)).
Background: Following recent epidemiological studies, which showed tissue reactions from ionizing radiation at significantly lower doses, the 2013/59 EURATOM Directive of 5th December 2013 lowered the limit on the equivalent dose to the eye lens from 150 mSv to 20 mSv per year. Therefore, as a precautionary measure, it is considered appropriate to perform a timely dose monitoring by using specific dosimeters.
Objectives: Analysis of the current state of the eye lens exposures during interventional procedures.
Magnetic resonance imaging (MRI) has evolved rapidly over the past few decades as one of the most flexible tools in medical research and diagnostic imaging. MRI facilities are important sources of multiple exposure to electromagnetic fields for both patients and health-care staff, due to the presence of electromagnetic fields of multiple frequency ranges, different temporal variations, and field strengths. Due to the increasing use and technological advancements of MRI systems, clearer insights into exposure assessment and a better understanding of possible harmful effects due to long-term exposures are highly needed.
View Article and Find Full Text PDFOrganisms exposed to ionizing radiation are mainly damaged by free radicals, which are generated by the radiolysis of water contained in the cells. Recently a significant reduction of tissue injury from irradiation damage was demonstrated by using MnSOD-plasmid/liposome treatments in the protection of murine lung. In this study we show that a new active recombinant human MnSOD (rMnSOD), easily administered in vivo, not only exerts the same radioprotective effect on normal cells and organisms as any MnSOD, but it is also radiosensitizing for tumor cells.
View Article and Find Full Text PDF