Publications by authors named "Vincenzo Cacace"

Article Synopsis
  • Mutant Z alpha-1 antitrypsin (ATZ) builds up in liver globules, leading to a type of liver disease, prompting the need for effective treatment strategies.
  • The study highlights that activating TRPML1, a lysosomal calcium channel, can help reduce these ATZ globules and liver fibrosis in specific mouse models.
  • This approach works by enhancing lysosomal exocytosis without increasing autophagy, suggesting a new potential treatment for liver diseases caused by protein buildup, including those linked to ATZ.
View Article and Find Full Text PDF

Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIA (MPS-IIIA) is an autosomal recessive disorder caused by mutations in SGSH involved in the degradation of heparan sulfate. MPS-IIIA presents severe neurological symptoms such as progressive developmental delay and cognitive decline, for which there is currently no treatment. Brain targeting represents the main challenge for therapeutics to treat MPS-IIIA, and the development of small-molecule-based treatments able to reach the CNS could be a relevant advance for therapy.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid β progressively aggregate in the brain.

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIA (MPS-IIIA) is a lysosomal storage disorder (LSD) caused by inherited defect of sulfamidase, a lysosomal sulfatase. MPS-IIIA is one of the most common and severe forms of LSDs with CNS involvement. Presently there is no cure.

View Article and Find Full Text PDF

Lysosomal storage disorders (LSDs) are inherited diseases characterized by lysosomal dysfunction and often showing a neurodegenerative course. There is no cure to treat the central nervous system in LSDs. Moreover, the mechanisms driving neuronal degeneration in these pathological conditions remain largely unknown.

View Article and Find Full Text PDF

Cerebrospinal fluid administration of recombinant adeno-associated viral (rAAV) vectors has been demonstrated to be effective in delivering therapeutic genes to the central nervous system (CNS) in different disease animal models. However, a quantitative and qualitative analysis of transduction patterns of the most promising rAAV serotypes for brain targeting in large animal models is missing. Here, we characterize distribution, transduction efficiency, and cellular targeting of rAAV serotypes 1, 2, 5, 7, 9, rh.

View Article and Find Full Text PDF