Publications by authors named "Vincenzo A Riggio"

Microalgae-based biorefinery processes are gaining particular importance as a biotechnological tool for direct carbon dioxide fixation and production of high-quality biomass and energy feedstock for different industrial markets. However, despite the many technological advances in photobioreactor designs and operations, microalgae cultivation is still limited due to the low yields achieved in open systems and to the high investment and operation costs of closed photobioreactors. In this work, a new alveolar flat panel photobioreactor was designed and characterized with the aim of achieving high microalgae productivities and CO bio-fixation rates.

View Article and Find Full Text PDF

A climate change mitigation refers to efforts to reduce or prevent emission of greenhouse gases. Mitigation can mean using new technologies and renewable energies, making older equipment more energy efficient, or changing management practices or consumer behavior. The mitigation technologies are able to reduce or absorb the greenhouse gases (GHG) and, in particular, the CO present in the atmosphere.

View Article and Find Full Text PDF

According to the European Union Directive 2009/28/EC, the goals of obtaining 20% of all energy requirements from renewable sources and a 20% reduction in primary energy use must be fulfilled by 2020. In this work, an evaluation was performed, from the environmental and energy point of view, of anaerobic digestion as a valid solution for the treatment of the byproducts obtained from the coffee-roasting process. In particular, thermophilic anaerobic digestion tests were carried out.

View Article and Find Full Text PDF

In this paper three microalgae strains (Neochloris oleoabundans, Chlorella vulgaris and Scenedesmus obliquus) were cultivated on an agro-zootechnical digestate in comparable conditions. The material used as growth media was obtained from a pilot plant anaerobic digestor used to digest several mixes of cattle slurry and raw cheese whey. The main aims were to compare the algae growth, their tolerance with respect to the various dilutions of digestate, their nutrient removal efficiency and their role in the transformation of nitrogen compounds.

View Article and Find Full Text PDF

Biogas yield of mixtures of cattle slurry and cheese whey, rates of production of methane, removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were investigated at 35 °C. Stable biogas production of 621 l/kg volatile solids at a hydraulic retention time of 42 days in a mixture containing 50% slurry and whey was obtained. The concentration of methane in the biogas was around 55%.

View Article and Find Full Text PDF