Study Objectives: Evaluate the performance of actigraphy-based open-source and proprietary sleep algorithms compared to polysomnography in children with suspected sleep disorders.
Methods: In a sleep clinic, 110 children (5-12 years, 54% female, 50% Black, 82% with sleep disorders) wore wrist-placed ActiGraph GT9X during overnight polysomnography. Actigraphy data were scored as sleep or wake using open-source GGIR and proprietary ActiLife software.
Background: A more fragmented, less stable rest-activity rhythm (RAR) is emerging as a risk factor for health. Accelerometer devices are increasingly used to measure RAR fragmentation using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probabilities (TP), self-similarity parameter (α), and activity balance index (ABI). These metrics were proposed in the context of long period of wear but, in real life, non-wear might introduce measurement bias.
View Article and Find Full Text PDFObjectives: We identified profiles of wake-time movement behaviours (sedentary behaviours, light intensity physical activity and moderate-to-vigorous physical activity) based on accelerometer-derived features among older adults and then examined their association with all-cause mortality.
Methods: Data were drawn from a prospective cohort of 3991 Whitehall II accelerometer substudy participants aged 60-83 years in 2012-2013. Daily movement behaviour profiles were identified using k-means cluster analysis based on 13 accelerometer-assessed features characterising total duration, frequency, bout duration, timing and activity intensity distribution of movement behaviour.
Accelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probability (TP), and self-similarity parameter (named ). However, their use remains mainly empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian estimators for TP, introducing the activity balance index (ABI) metric, a transformation of , and describing distributions of these metrics in real-life setting.
View Article and Find Full Text PDFLarge population-based cohort studies utilizing device-based measures of physical activity are crucial to close important research gaps regarding the potential protective effects of physical activity on chronic diseases. The present study details the quality control processes and the derivation of physical activity metrics from 100 Hz accelerometer data collected in the German National Cohort (NAKO). During the 2014 to 2019 baseline assessment, a subsample of NAKO participants wore a triaxial ActiGraph accelerometer on their right hip for seven consecutive days.
View Article and Find Full Text PDFWe examined the comparability of children's nocturnal sleep estimates using accelerometry data, processed with and without a sleep log. In a secondary analysis, we evaluated factors associated with disagreement between processing approaches. Children (n = 722, age 5-12 years) wore a wrist-based accelerometer for 14 days during Autumn 2020, Spring 2021, and/or Summer 2021.
View Article and Find Full Text PDFAccelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probability (TP), and self-similarity parameter (named ). However, their use remains mainly empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian estimators for TP, introducing the activity balance index metric, an adaptation of , and describing distributions of these metrics in real-life setting.
View Article and Find Full Text PDFHigh physical activity levels during wake are beneficial for health, while high movement levels during sleep are detrimental to health. Our aim was to compare the associations of accelerometer-assessed physical activity and sleep disruption with adiposity and fitness using standardized and individualized wake and sleep windows. People (N = 609) with type 2 diabetes wore an accelerometer for up to 8 days.
View Article and Find Full Text PDFBackground: Identification of new physical activity (PA) and sedentary behaviour (SB) features relevant for health at older age is important to diversify PA targets in guidelines, as older adults rarely adhere to current recommendations focusing on total duration. We aimed to identify accelerometer-derived dimensions of movement behaviours that predict mortality risk in older populations.
Methods: We used data on 21 accelerometer-derived features of daily movement behaviours in 3991 participants of the UK-based Whitehall II accelerometer sub-study (25.
Background: Ageing is accompanied by changes in sleep, while poor sleep is suggested as a risk factor for several health outcomes. Non-pharmacological approaches have been proposed to improve sleep in elderly; their impact remains to be investigated. The aim of this study was to examine the independent day-to-day associations of physical behaviours and daylight exposure with sleep characteristics among older adults.
View Article and Find Full Text PDFBackground: Accurate accelerometer-based methods are required for assessment of 24-h physical behavior in young children. We aimed to summarize evidence on measurement properties of accelerometer-based methods for assessing 24-h physical behavior in young children.
Methods: We searched PubMed (MEDLINE) up to June 2021 for studies evaluating reliability or validity of accelerometer-based methods for assessing physical activity (PA), sedentary behavior (SB), or sleep in 0-5-year-olds.
Importance: Identification of individual-level barriers associated with decreased activity in older age is essential to inform effective strategies for preventing the health outcomes associated with high sedentary behavior and lack of physical activity during aging.
Objective: To assess cross-sectional and prospective associations of a large set of factors with objectively assessed sedentary time and physical activity at older age.
Design, Setting, And Participants: This population-based cohort study was conducted among participants in the Whitehall II accelerometer substudy with accelerometer data assessed in 2012 to 2013.
Background: We examined associations of total duration and pattern of accumulation of objectively measured sedentary behavior (SB) with incident cardiovascular disease (CVD) and all-cause mortality among older adults.
Methods: Total sedentary time and 8 sedentary accumulation pattern metrics were extracted from accelerometer data of 3 991 Whitehall II study participants aged 60-83 years in 2012-2013. Incident CVD and all-cause mortality were ascertained up to March 2019.
Physical activity (PA) is a complex human behavior, which implies that multiple dimensions need to be taken into account in order to reveal a complete picture of the PA behavior profile of an individual. This scoping review aimed to map advanced analytical methods and their summary variables, hereinafter referred to as wearable-specific indicators of PA behavior (WIPAB), used to assess PA behavior. The strengths and limitations of those indicators as well as potential associations with certain health-related factors were also investigated.
View Article and Find Full Text PDFBackground: Moderate-to-vigorous physical activity (MVPA) is proposed as key for cardiovascular diseases (CVD) prevention. At older ages, the role of sedentary behaviour (SB) and light intensity physical activity (LIPA) remains unclear. Evidence so far is based on studies examining movement behaviours as independent entities ignoring their co-dependency.
View Article and Find Full Text PDFBr J Sports Med
November 2021
Objective: To examine the joint associations of daily time spent in different intensities of physical activity, sedentary behaviour and sleep with all-cause mortality.
Methods: Federated pooled analysis of six prospective cohorts with device-measured time spent in different intensities of physical activity, sedentary behaviour and sleep following a standardised compositional Cox regression analysis.
Participants: 130 239 people from general population samples of adults (average age 54 years) from the UK, USA and Sweden.
Sleep dysregulation is a feature of dementia but it remains unclear whether sleep duration prior to old age is associated with dementia incidence. Using data from 7959 participants of the Whitehall II study, we examined the association between sleep duration and incidence of dementia (521 diagnosed cases) using a 25-year follow-up. Here we report higher dementia risk associated with a sleep duration of six hours or less at age 50 and 60, compared with a normal (7 h) sleep duration, although this was imprecisely estimated for sleep duration at age 70 (hazard ratios (HR) 1.
View Article and Find Full Text PDFBr J Sports Med
April 2022
The inter-relationship between physical activity, sedentary behaviour and sleep (collectively defined as physical behaviours) is of interest to researchers from different fields. Each of these physical behaviours has been investigated in epidemiological studies, yet their codependency and interactions need to be further explored and accounted for in data analysis. Modern accelerometers capture continuous movement through the day, which presents the challenge of how to best use the richness of these data.
View Article and Find Full Text PDFAccurate and low-cost sleep measurement tools are needed in both clinical and epidemiological research. To this end, wearable accelerometers are widely used as they are both low in price and provide reasonably accurate estimates of movement. Techniques to classify sleep from the high-resolution accelerometer data primarily rely on heuristic algorithms.
View Article and Find Full Text PDFBackground: Physical activity (PA) is a complex multidimensional human behaviour. Currently, there is no standardised approach for measuring PA using wearable accelerometers in health research. The total volume of PA is an important variable because it includes the frequency, intensity and duration of activity bouts, but it reduces them down to a single summary variable.
View Article and Find Full Text PDFLarge epidemiological studies that use accelerometers for physical behavior and sleep assessment differ in the location of the accelerometer attachment and the signal aggregation metric chosen. This study aimed to assess the comparability of acceleration metrics between commonly-used body-attachment locations for 24 hours, waking and sleeping hours, and to test comparability of PA cut points between dominant and non-dominant wrist. Forty-five young adults (23 women, 18-41 years) were included and GT3X + accelerometers (ActiGraph, Pensacola, FL, USA) were placed on their right hip, dominant, and non-dominant wrist for 7 days.
View Article and Find Full Text PDFExcessive daytime sleepiness (EDS) affects 10-20% of the population and is associated with substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity).
View Article and Find Full Text PDFThe association between physical activity and lung function is thought to depend on smoking history but most previous research uses self-reported measures of physical activity. This cross-sectional study investigates whether the association between accelerometer-derived physical activity and lung function in older adults differs by smoking history. The sample comprised 3063 participants (age = 60-83 years) who wore an accelerometer during 9 days and undertook respiratory function tests.
View Article and Find Full Text PDFSleep is an essential human function but its regulation is poorly understood. Using accelerometer data from 85,670 UK Biobank participants, we perform a genome-wide association study of 8 derived sleep traits representing sleep quality, quantity and timing, and validate our findings in 5,819 individuals. We identify 47 genetic associations at P < 5 × 10, of which 20 reach a stricter threshold of P < 8 × 10.
View Article and Find Full Text PDF