The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases.
View Article and Find Full Text PDFPurpose Of Review: This article reviews the latest publications in genetic epilepsies, with an eye on publications that have had a translational impact. This review is both timely and relevant as translational discoveries in genetic epilepsies are becoming so frequent that it is difficult for the general pediatrician and even the general child neurologist to keep up.
Recent Findings: We divide these publications from 2021 and 2022 into three categories: diagnostic testing, genotype-phenotype correlation, and therapies.
Background: Neurodevelopmental disorders (NDDs) affect 1:6 children in the United States and are often linked to genetic disorders. Because many genes are enriched in brain and testicular tissue, genital malformations identified early may be a predictor of genetic disorders in children with NDDs. However, few studies have evaluated the specific effects of genital malformations.
View Article and Find Full Text PDFGenetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing "precision therapies" based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies.
View Article and Find Full Text PDFWe report on a child with an early and severe manifestation of an Aquaporin-4 (AQP-4) positive Neuromyelitis Optica Spectrum Disorder (NMOSD) who had a refractory disease course despite aggressive immunotherapy and underwent autologous hematopoietic stem cell transplant (AHSCT).
View Article and Find Full Text PDFThe past 25 years have seen a strong increase in the number of publications related to criticality in different areas of neuroscience. The potential of criticality to explain various brain properties, including optimal information processing, has made it an increasingly exciting area of investigation for neuroscientists. Recent reviews on this topic, sometimes termed brain criticality, make brief mention of clinical applications of these findings to several neurological disorders such as epilepsy, neurodegenerative disease, and neonatal hypoxia.
View Article and Find Full Text PDFFor various reasons, status epilepticus in children is different than in adults. Pediatric specificities include status epilepticus epidemiology, underlying etiologies, pathophysiological mechanisms, and treatment options. Relevant data from the literature are presented for each of them, and questions remaining open for future studies on status epilepticus in childhood are listed.
View Article and Find Full Text PDFMutations that disrupt the presynaptic protein have been implicated in various neurological disorders including epilepsy, chronic encephalopathy, DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures) syndrome, nonsyndromic hearing loss, and myoclonus. We present the case of a 22-month-old male with infantile-onset paroxysmal episodes of facial and limb myoclonus. The episodes were linked to biallelic variants in exon 2 of the gene that lead to amino acid changes (c.
View Article and Find Full Text PDFThis paper deals with a Cox proportional hazards regression model, where some covariates of interest are randomly right-censored. While methods for censored outcomes have become ubiquitous in the literature, methods for censored covariates have thus far received little attention and, for the most part, dealt with the issue of limit-of-detection. For randomly censored covariates, an often-used method is the inefficient complete-case analysis (CCA) which consists in deleting censored observations in the data analysis.
View Article and Find Full Text PDF