Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM).
View Article and Find Full Text PDFMutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated.
View Article and Find Full Text PDFMetabolic rewiring underlies the effector functions of macrophages, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination.
View Article and Find Full Text PDFMetabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities.
View Article and Find Full Text PDFElucidation of mechanisms underlying the increased androgen receptor (AR) activity and subsequent development of aggressive prostate cancer (PrCa) is pivotal in developing new therapies. Using a systems biology approach, we interrogated the AR-regulated proteome and identified PDZ binding kinase (PBK) as a novel AR-regulated protein that regulates full-length AR and AR variants (ARVs) activity in PrCa. PBK overexpression in aggressive PrCa is associated with early biochemical relapse and poor clinical outcome.
View Article and Find Full Text PDFEmerging data demonstrate homologous recombination (HR) defects in castration-resistant prostate cancers, rendering these tumours sensitive to PARP inhibition. Here we demonstrate a direct requirement for the androgen receptor (AR) to maintain HR gene expression and HR activity in prostate cancer. We show that PARP-mediated repair pathways are upregulated in prostate cancer following androgen-deprivation therapy (ADT).
View Article and Find Full Text PDFWe have previously reported that the negative signaling regulator Similar Expression to FGF (hSef) is downregulated in prostate cancer and its loss is associated with clinical metastasis. Here, we explored the mechanistic basis of this finding. We first confirmed our clinical observation by testing hSef manipulation in an in vivo metastasis model.
View Article and Find Full Text PDFOur understanding of cancer has recently seen a major paradigm shift resulting in it being viewed as a metabolic disorder, and altered cellular metabolism being recognised as a hallmark of cancer. This concept was spurred by the findings that the oncogenic mutations driving tumorigenesis induce a reprogramming of cancer cell metabolism that is required for unrestrained growth and proliferation. The recent discovery that mutations in key mitochondrial enzymes play a causal role in tumorigenesis suggested that dysregulation of metabolism could also be a driver of tumorigenesis.
View Article and Find Full Text PDFMutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite.
View Article and Find Full Text PDFBackground: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling.
Methods: Using genome-wide approaches, we interrogated all AR regulated kinases.
The androgen receptor (AR) regulates prostate cell growth in man, and prostate cancer is the commonest cancer in men in the UK. We present a comprehensive analysis of AR binding sites in human prostate cancer tissues, including castrate-resistant prostate cancer (CRPC). We identified thousands of AR binding sites in CRPC tissue, most of which were not identified in PC cell lines.
View Article and Find Full Text PDFHere we investigate the effects of expressing an activated mutant of Notch (ICD-E) in an inducible transgenic mouse model. Hepatic expression of ICD-E in adult animals has no detectable phenotype, but simultaneous induction of ICD-E in both the liver and small intestine results in hepatic steatosis, lipogranuloma formation and mild insulin resistance within 96 hours. This supports work that suggests that fatty liver disease may result from disruption of the gut-liver axis.
View Article and Find Full Text PDFA subset of proteins predominantly associated with early endosomes or implicated in clathrin-mediated endocytosis can shuttle between the cytoplasm and the nucleus. Although the endocytic functions of these proteins have been extensively studied, much less effort has been expended in exploring their nuclear roles. Membrane trafficking proteins can affect signalling and proliferation and this can be achieved either at a nuclear or endocytic level.
View Article and Find Full Text PDFChromatin immunoprecipitation (ChIP), when paired with sequencing or arrays, has become a method of choice for the unbiased identification of genomic-binding sites for transcription factors and epigenetic marks in various model systems. The data generated is often then interpreted by groups seeking to link these binding sites to the expression of adjacent or distal genes, and more broadly to the evolution of species, cell fate/differentiation or even cancer development. Against this backdrop is an ongoing debate over the relative importance DNA sequence versus chromatin structure and modification in the regulation of gene expression (Anon.
View Article and Find Full Text PDFThe Notch gene of Drosophila encodes a single transmembrane receptor that plays a central role in the process of lateral inhibition. This process results in the selection of individual mesodermal and neural precursors during the development of the muscular and nervous systems. The activation of Notch during lateral inhibition is mediated by the transmembrane ligand Delta (Dl) and effected by the transcription factor Suppressor of Hairless (Su(H)).
View Article and Find Full Text PDFThe intestinal epithelium comprises differentiated cells of four lineages maintained by precursor cells. As the Notch pathway controls the fate of proliferating cells in many systems, we investigated the effect of conditional expression of an activated Notch mutant in intestinal epithelium. An increase in the number of goblet cells occurs within 8 h of induction, due to an effect of Notch on post-mitotic cells, not on precursors.
View Article and Find Full Text PDFCurr Opin Genet Dev
October 2002
During development, signalling by members of the Notch family of cell surface receptors plays a widespread role in the assignation of cell fates within the process of lateral inhibition. This function of Notch is mediated by a well-established mechanism that relies on a ligand-induced release of the intracellular domain of Notch (NICD) and the interaction of this fragment with members of the CSL (CBF1, Suppressor of Hairless, Lag-1) family of transcription factors within the nucleus. However, there is increasing evidence that Notch can signal in CSL-independent modes.
View Article and Find Full Text PDF