Shell-by-Shell (SbS)-functionalized NPs can be tailor-made by combining a metal oxide NP core of choice with any desired phosphonic acids and amphiphiles as 1st or 2nd ligand shell building blocks. The complementary composition of such highly hierarchical structures makes them interesting candidates for various biomedical applications, as certain active ingredients can be incorporated into the structure. Here, we used TiO and CoFeO NPs as drug delivery tools and coated them with a hexadecylphosphonic acid and with hexadecyl ammonium phenolates (caffeate, p-coumarate, ferulate), that possess anticancer as well as antioxidant properties.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNT) have been covalently cross-linked via a reductive functionalization pathway, utilizing negatively charged carbon nanotubides (KC). We have compared the use of difunctional linkers acting as molecular pillars between the nanotubes, namely, p-diiodobenzene, p-diiodobiphenyl, benzene-4,4'-bis(diazonium), and 1,1'-biphenyl-4,4'-bis(diazonium) salts as electrophiles. We have employed statistical Raman spectroscopy (SRS), a forefront characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TG-GC-MS) and aberration-corrected high-resolution transmission electron microscopy imaging series at 80 kV to unambiguously demonstrate the covalent binding of the molecular linkers.
View Article and Find Full Text PDF