The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A and tridecaptin D, which exhibit unusual bioactivities within their class.
View Article and Find Full Text PDFBacteria use two-component regulatory systems (TCSs) to adapt to changes in their environment by changing their gene expression. In this study, we show that the EnvZ/OmpR TCS of the clinically relevant opportunistic pathogen plays an important role in successfully establishing lung infection and virulence. In addition, we elucidate the OmpR regulon within the host.
View Article and Find Full Text PDFThe unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination.
View Article and Find Full Text PDFThe development of anti-virulence drug therapy against infections would provide an alternative to traditional antibacterial therapy that are increasingly failing. Here, we demonstrate that the OmpR transcriptional regulator plays a pivotal role in the pathogenesis of diverse clinical strains in multiple murine and invertebrate infection models. We identified OmpR-regulated genes using RNA sequencing and further validated two genes whose expression can be used as robust biomarker to quantify OmpR inhibition in .
View Article and Find Full Text PDFAcinetobacter baumannii is a gram-negative bacterium causing severe hospital-acquired infections such as bloodstream infections or pneumonia. Moreover, multidrug resistant A. baumannii becomes prevalent in many hospitals.
View Article and Find Full Text PDFGut microbiota dysbiosis toward adherent-invasive (AIEC) plays an important role in Crohn's disease (CD). The OmpR transcriptional regulator is required for the AIEC LF82 prototype strain to adhere and invade intestinal epithelial cells. In this study, we explored the role of OmpR in AIEC pathogenesis using a panel of eight strains isolated from CD patients and identified as AIEC.
View Article and Find Full Text PDFRifamycin antibiotics were discovered during the 1950s, and their main representative, rifampicin, remains a cornerstone treatment for TB. The clinical use of rifamycin is restricted to mycobacteria and Gram-positive infections because of its poor ability to penetrate the Gram-negative outer membrane. Rifabutin, a rifamycin antibiotic approved for the prevention of Mycobacterium avium complex disease, makes an exception to this rule by hijacking the iron uptake system of Acinetobacter baumannii, resulting in potent activity against this important Gram-negative pathogen.
View Article and Find Full Text PDFBackground: Rifabutin, an oral drug approved to treat Mycobacterium avium infections, demonstrated potent activity against Acinetobacter baumannii in nutrient-limited medium enabled by rifabutin cellular uptake through the siderophore receptor FhuE.
Objectives: To determine rifabutin in vitro activity and resistance mechanisms in a large panel of A. baumannii isolates.
Nosocomial infections with are a global problem in intensive care units with high mortality rates. Increasing resistance to first- and second-line antibiotics has forced the use of colistin as last-resort treatment, and increasing development of colistin resistance in has been reported. We evaluated the transcriptional regulator PmrA as potential drug target to restore colistin efficacy in Deletion of restored colistin susceptibility in 10 of the 12 extensively drug-resistant clinical isolates studied, indicating the importance of PmrA in the drug resistance phenotype.
View Article and Find Full Text PDFBackground: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown.
View Article and Find Full Text PDFWhen bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa.
View Article and Find Full Text PDFAntibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation.
View Article and Find Full Text PDFInfections with the Gram-negative coccobacillus Acinetobacter baumannii are a major threat in hospital settings. The progressing emergence of multidrug-resistant clinical strains significantly reduces the treatment options for clinicians to fight A. baumannii infections.
View Article and Find Full Text PDFA synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1.
View Article and Find Full Text PDF