We have developed a porous silicon nanocantilever for a nano-optomechanical system (NOMS) with a universal sensing surface for enhanced sensitivity. Using electron beam lithography, we selectively applied a VO/HF stain etch to the mechanical elements while protecting the silicon-on-insulator photonic ring resonators. This simple, rapid, and electrodeless approach generates tunable device porosity simultaneously with the mechanical release step.
View Article and Find Full Text PDFMechanical resonances are used in a wide variety of devices, from smartphone accelerometers to computer clocks and from wireless filters to atomic force microscopes. Frequency stability, a critical performance metric, is generally assumed to be tantamount to resonance quality factor (the inverse of the linewidth and of the damping). We show that the frequency stability of resonant nanomechanical sensors can be improved by lowering the quality factor.
View Article and Find Full Text PDFMicrogas chromatography (GC) is promising for portable chemical analysis. We demonstrate a nano-optomechanical system (NOMS) as an ultrasensitive mass detector in gas chromatography. Bare, native oxide, silicon surfaces are sensitive enough to monitor volatile organic compounds at ppm levels, while simultaneously demonstrating chemical selectivity.
View Article and Find Full Text PDFWavelength-division multiplexing is demonstrated for a set of two doubly clamped beams. Using a single input/output waveguide in a nanophotonic detection system, the two mechanical beams are independently addressable using different wavelength channels as determined by their respective racetrack resonator detection cavities. The two cavities slightly overlap, which also enables the mechanical frequency of both beams to be detected simultaneously with a single wavelength.
View Article and Find Full Text PDFThe effect of donor film thickness and laser beam fluence on the size of laser-induced forward transfer (LIFT) spots is studied to achieve sub-100 nm features. A 130 fs, 800 nm laser is focused on ultrathin Cr films, and the transfer and ablation thresholds of these films at various thicknesses are determined. The minimum transfer spot size decreases with decreasing donor film thickness and incident laser fluence.
View Article and Find Full Text PDF