Publications by authors named "Vincent Sewalt"

Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers.

View Article and Find Full Text PDF

Cell-cultured meat and seafood offer a sustainable opportunity to meet the world's increasing demand for protein in a climate-changed world. A responsible, data-driven approach to assess and demonstrate safety of cell-cultured meat and seafood can support consumer acceptance and help fully realize the potential of these products. As an initial step toward a thorough demonstration of safety, this review identifies hazards that could be introduced during manufacturing, evaluates applicability of existing safety assessment approaches, and highlights research priorities that could support safe commercialization.

View Article and Find Full Text PDF

A 90-day subchronic oral toxicity study was conducted to evaluate the safety of a consensus bacterial phytase variant 6-phytase (PhyG) for use as an animal feed additive. This phytase is produced by fermentation with a fungal () production strain expressing a biosynthetic variant of a consensus bacterial phytase gene assembled ancestral reconstruction with sequence bias for the phytase from . Rats were administered PhyG daily oral gavage at dose-levels of 0 (distilled water), 250, 500 or 1000 mg total organic solids (TOS)/kg bodyweight (bw)/day (equivalent to 0, 112,500, 225,000 and 450,000 phytase units (FTU)/kg bw/day, respectively).

View Article and Find Full Text PDF

Over the past several decades, the use of genetically engineered microorganisms (GEMs, often referred to as Genetically Modified Microorganisms or GMMs) has become widespread in the production of food processing aids and other food ingredients. GEMs are advancing food production by increasing efficiency, reducing waste and resource requirements, and ultimately enabling beneficial innovations such as the cost-effective fortification of food with essential nutrients, vitamins, and amino acids, and delivery of tailored enzymes to achieve unique food processing capabilities. Regulatory agencies, including those in the European Union, United States, and Canada review the safety of GEMs when evaluating food substances produced using GEMs to ensure that both the microorganism and the resulting food substance are safe.

View Article and Find Full Text PDF

The utility of a next generation biosynthetic bacterial 6-phytase (PhyG) in restoring bone ash, bone phosphorus (P) content and performance in piglets depleted in P was evaluated. A total of 9 treatments were tested as follows. Treatment 1, a negative control (NC) diet; treatments 2, 3, 4, NC supplemented with 250, 500 or 1,000 FTU/kg of PhyG; treatments 5, 6, NC supplemented with 500 or 1,000 FTU/kg of a commercial sp phytase (PhyB); treatments 7, 8, 9, NC supplemented with monocalcium phosphate (MCP) to provide 0.

View Article and Find Full Text PDF

With the exception for the potential skin and eye irritating effects of some proteases, and the well-documented potential for respiratory sensitization in case of work place exposure, enzymes in general don't produce acute toxicity, dermal sensitization; genotoxicity, or repeated dose oral toxicity. Acute inhalation, reproduction, chronic toxicity, and carcinogenicity are not relevant for enzymes. Several hundred mutagenicity studies have been conducted on bacterial and mammalian cells using a variety of enzymes.

View Article and Find Full Text PDF

A safety assessment was conducted for a symthetic variant Cytophaga sp. α-amylase enzyme expressed in Bacillus licheniformis and formulated into two distinct product formats: whole broth (a preparation in which the production organism is completely inactivated, but containing residual cell debris) and clarified preparation (from which the production organism is completely removed). The enzyme was improved via modern biotechnology techniques for use in the endohydrolysis of starch, glycogen, related polysaccharides and oligosaccharides.

View Article and Find Full Text PDF

Present letter is aimed at clarifying some critical points highlighted by Hanlon et al. regarding the common knowledge element of the safety of food enzymes in support of their GRAS designation. Particularly, we outline the development of peer-reviewed, generally recognized safety evaluation methodology for microbial enzymes and its adoption by the enzyme industry, which provides the US FDA with a review framework for enzyme GRAS Notices.

View Article and Find Full Text PDF