Whether it be to measure their value before a trade, to calculate yields and optimize the recycling process or to check for the presence of harmful substances, Waste Electronic and Electric Equipments (WEEE) need to be characterized. Sampling can give an accurate assessment of the grade of a batch of WEEE, but quantifying the uncertainty around this estimate can be delicate. Pierre Gy's sampling theory of particulate matter studies how the latter is affected by the physical and chemical properties of the studied objects.
View Article and Find Full Text PDFMacromol Biosci
December 2023
The uncontrolled accumulation of biological materials on the surface of medical devices through protein adsorption or cell adhesion causes adverse biological reactions in the living host system, leading to complications. In this study, poly(ethylene glycol) (PEG) is successfully grafted onto polyurethane (PU) surfaces by using a new strategy through a simple and efficient transurethanization reaction. The PEG hydroxyl group is deprotonated and then reacted with the PU surface to provide antiadhesive hydrophilic surfaces in a single step.
View Article and Find Full Text PDFGraphene oxide (GO) is a 2D nanomaterial with unique chemistry due to the combination of sp hybridization and oxygen functional groups (OFGs) even in single layer. OFGs play a fundamental role in the chemical functionalization of GO to produce GO-based materials for diverse applications. However, traditional strategies that employ epoxides, alcohols, and carboxylic acids suffer from low control and undesirable side reactions, including by-product formation and GO reduction.
View Article and Find Full Text PDFThe understanding of endothelium-extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates.
View Article and Find Full Text PDFThe characterization of wastes constituted by LED lamps at the end of their lives is currently a concern of researchers and environmental managers not only because of the large volume will be generated by such wastes, but also to identify appropriate strategies for their reuse as well as their recyclability. This research describes the different steps involved in the characterization of LED lamps at the end of their lives such as, testing the functionality of the whole lamps, as well as modules and the LED components of the non-functional lamps. The results revealed that about 30.
View Article and Find Full Text PDFIn this paper, we describe a new strategy to recycle polyurethanes (PUs) using base-catalyzed transcarbamoylation. PUs were depolymerized qualitatively in the presence of MeOH (methanol)/tetrahydrofuran as a solvent and -butoxide as a base catalyst. The resulting depolymerized mixture constituted by -dimethylcarbamates and polyols can either be used as the starting material to synthesize new PUs with the transcarbamoylation approach or be purified to recover polyols and diisocyanates.
View Article and Find Full Text PDFStructuring pores into stable membrane and controlling their opening is extremely useful for applications that require nanopores as channels for material exchange and transportation. In this work, nanoporous vesicles with aggregation-induced emission (AIE) properties were developed from the amphiphilic polymer PEG550-TPE-Chol, in which the hydrophobic part is composed of a tetraphenylethene (TPE) group and a cholesterol moiety and the hydrophilic block is a poly(ethylene glycol) (PEG, = 550 Da). Two stereoisomers, -PEG550-TPE-Chol and -PEG550-TPE-Chol, were successfully synthesized.
View Article and Find Full Text PDFWe developed a new transcutaneous method for breast cancer detection with dogs: 2 dogs were trained to sniff skin secretion samples on compresses that had been worn overnight by women on their breast, and to recognize a breast cancer sample among 4 samples. During the test, the dogs recognized 90.3% of skin secretion breast cancer samples.
View Article and Find Full Text PDFCells are able to develop various types of membrane protrusions that modulate their adhesive, migratory, or functional properties. However, their ability to form basal protrusions, particularly in the context of epithelial sheets, is not widely characterized. The authors built hexagonal lattices to probe systematically the microtopography-induced formation of epithelial cell protrusions.
View Article and Find Full Text PDFInitial adhesion of bacterial cells to surfaces or host tissues is a key step in colonisation and biofilm formation processes, and is mediated by cell surface appendages. It was previously demonstrated that Escherichia coli K-12 possesses an arsenal of silenced chaperone-usher fimbriae that were functional when constitutively expressed. Among them, production of prevalent Yad fimbriae induces adhesion to abiotic surfaces.
View Article and Find Full Text PDFBiocompatible amphiphilic block copolymers composed of polysarcosine (PSar) and poly(ε-caprolactone) (PCL) were synthesized using ring-opening polymerization of sarcosine N-thiocarboxyanhydride initiated by oxyamine-ended PCL and characterized by NMR, SEC, and DSC. Self-assembling of two triblock copolymers PSar8-b-PCL28-b-PSar8 (CS7) and PSar16-b-PCL40-b-PSar16 (CS10) in dilute solution was studied in detail toward polymersome formation using thin-film hydration and nanoprecipitation techniques. A few giant vesicles were obtained by thin-film hydration from both copolymers and visualized by confocal laser scanning microscope.
View Article and Find Full Text PDFThe use of catheters and other implanted devices is constantly increasing in modern medicine. Although catheters improve patients' healthcare, the hydrophobic nature of their surface material promotes protein adsorption and cell adhesion. Catheters are therefore prone to complications, such as colonization by bacterial and fungal biofilms, associated infections, and thrombosis.
View Article and Find Full Text PDFObjective: This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS).
Material And Methods: An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS.
A new strategy to improve silicon-based endodontic treatment tightness by dentine hydrophobization is presented in this work: root dentine was silanized to obtain a hydrophobic dentine-sealer interface that limits fluid penetration. This strategy was based on the grafting of aliphatic carbon chains on the dentine through a silanization with the silane end groups [octadecyltrichlorosilane (OTS) and octadecyltriethoxysilane]. Dentine surface was previously pretreated, applying ethylenediaminetetraacetic acid and sodium hypochlorite, to expose hydroxyl groups of collagen for the silane grafting.
View Article and Find Full Text PDFThis work describes an integrated approach for designing on demand Self-Assembled Monolayers (SAMs) on silicon oxides and particularly glass substrates for cell biology applications. Starting from commercially available compounds, the strategy relies on thiol-ene reaction and provides high quality SAMs exhibiting adhesive and anti-adhesive patterns.
View Article and Find Full Text PDFWe have investigated the most efficient way of preparing biocompatible gold nanorods (GNR) used as tool for cancer imaging and therapy. The surface of cetyltrimethylammonium bromide-stabilized gold nanorods (GNR-CTAB) was functionalized with various thio-polyethylene glycols of the general formula HS-PEGmX (m=356-10,000; X=-OMe, -NH(2)). The influence of several parameters such as PEG chain length, reaction conditions and purification method on long-term stability, morphology and optical properties of the produced GNR-S-PEGmX was studied, demonstrating the existence of a threshold HS-PEGmX chain length (with molecular weight m≥2000) for efficient steric stabilization of GNR.
View Article and Find Full Text PDFExamination of local folding and H-bonding patterns in model compounds can be extremely informative to gain insight into the propensity of longer-chain oligomers to adopt specific folding patterns (i.e. foldamers) based on remote interactions.
View Article and Find Full Text PDFA new, simple method to obtain ultrathin polycationic monolayers on hydroxylated surfaces is described which uses a bifunctional copolymer comprising a reactive part (trimethoxysilane) and positive charges (quaternary ammonium salts) to confer antimicrobial properties.
View Article and Find Full Text PDFThis paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW approximately 30 kD) to the ion channel-forming peptides (MW approximately 2.
View Article and Find Full Text PDFThis paper reports dissociation constants and "effective molarities" (M(eff)) for the intramolecular binding of a ligand covalently attached to the surface of a protein by oligo(ethylene glycol) (EG(n)) linkers of different lengths (n = 0, 2, 5, 10, and 20) and compares these experimental values with theoretical estimates from polymer theory. As expected, the value of M(eff) is lowest when the linker is too short (n = 0) to allow the ligand to bind noncovalently at the active site of the protein without strain, is highest when the linker is the optimal length (n = 2) to allow such binding to occur, and decreases monotonically as the length increases past this optimal value (but only by a factor of approximately 8 from n = 2 to n = 20). These experimental results are not compatible with a model in which the single bonds of the linker are completely restricted when the ligand has bound noncovalently to the active site of the protein, but they are quantitatively compatible with a model that treats the linker as a random-coil polymer.
View Article and Find Full Text PDFThis paper describes a systematic study of the thermodynamics of association of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamides with chains of oligoglycine, oligosarcosine, and oligoethylene glycol of lengths of one to five residues. For all three of these series of ligands, the enthalpy of binding became less favorable, and the entropy less unfavorable, as the chain length of the ligands increased. The dependence on chain length of the enthalpy was almost perfectly compensated by that of the entropy; this compensation resulted in dissociation constants that were independent of chain length for the three series of ligands.
View Article and Find Full Text PDF