Publications by authors named "Vincent Paupe"

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion.

View Article and Find Full Text PDF
Article Synopsis
  • Organelles create membrane contact sites for molecule and signal transfer, with mitochondria-endoplasmic reticulum contact sites (MERCS) playing a key role in various diseases, including neurodegenerative disorders.
  • A genome-wide screen identified 410 genes that regulate MERCS, with 29 genes chosen for further analysis; particularly, GET4 and BAG6 were found to significantly influence MERCS when suppressed.
  • Investigating GET4 and BAG6 revealed that their loss increases MERCS and enhances mitochondrial function, while also showing neuroprotective effects in a Drosophila model of Alzheimer's disease.
View Article and Find Full Text PDF

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology.

View Article and Find Full Text PDF

T cell receptor activation of naïve CD8 T lymphocytes initiates their maturation into effector cytotoxic T lymphocytes (CTLs), which can kill cancer and virally infected cells. Although CTLs show an increased reliance on glycolysis upon acquisition of effector function, we found an essential requirement for mitochondria in target cell–killing. Acute mitochondrial depletion in USP30 (ubiquitin carboxyl-terminal hydrolase 30)–deficient CTLs markedly diminished killing capacity, although motility, signaling, and secretion were all intact.

View Article and Find Full Text PDF

Mitochondrial plasticity is a key regulator of cell fate decisions. Mitochondrial division involves Dynamin-related protein-1 (Drp1) oligomerization, which constricts membranes at endoplasmic reticulum (ER) contact sites. The mechanisms driving the final steps of mitochondrial division are still unclear.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles undergoing coordinated cycles of fission and fusion, referred as 'mitochondrial dynamics', in order to maintain their shape, distribution and size. Their transient and rapid morphological adaptations are crucial for many cellular processes such as cell cycle, immunity, apoptosis and mitochondrial quality control. Mutations in the core machinery components and defects in mitochondrial dynamics have been associated with numerous human diseases.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles involved in numerous physiological functions. Beyond their function in ATP production, mitochondria regulate cell death, reactive oxygen species (ROS) generation, immunity and metabolism. Mitochondria also play a key role in the buffering of cytosolic calcium, and calcium transported into the matrix regulates mitochondrial metabolism.

View Article and Find Full Text PDF

Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome.

View Article and Find Full Text PDF

Mitochondrial calcium is an important modulator of cellular metabolism. CCDC90A was reported to be a regulator of the mitochondrial calcium uniporter (MCU) complex, a selective channel that controls mitochondrial calcium uptake, and hence was renamed MCUR1. Here we show that suppression of CCDC90A in human fibroblasts produces a specific cytochrome c oxidase (COX) assembly defect, resulting in decreased mitochondrial membrane potential and reduced mitochondrial calcium uptake capacity.

View Article and Find Full Text PDF

RNA-binding proteins are at the heart of posttranscriptional gene regulation, coordinating the processing, storage, and handling of cellular RNAs. We show here that GRSF1, previously implicated in the binding and selective translation of influenza mRNAs, is targeted to mitochondria where it forms granules that colocalize with foci of newly synthesized mtRNA next to mitochondrial nucleoids. GRSF1 preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long noncoding RNAs for cytb and ND5, each of which contains multiple consensus binding sequences.

View Article and Find Full Text PDF

Background: In the last ten years, deficiencies in tricarboxylic acid cycle (TCAC) enzymes have been shown to cause a wide spectrum of human diseases, including malignancies and neurological and cardiac diseases. A prerequisite to the identification of disease-causing TCAC enzyme deficiencies is the availability of effective enzyme assays.

Results: We developed three assays that measure the full set of TCAC enzymes.

View Article and Find Full Text PDF

Cytochrome c oxidase (COX) deficiency is associated with a wide spectrum of clinical conditions, ranging from early onset devastating encephalomyopathy and cardiomyopathy, to neurological diseases in adulthood and in the elderly. No method of compensating successfully for COX deficiency has been reported so far. In vitro, COX-deficient human cells require additional glucose, pyruvate and uridine for normal growth and are specifically sensitive to oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • Friedreich ataxia is caused by low levels of mitochondrial frataxin, leading to neuron death and reduced activity of iron sulfur cluster proteins, which contributes to disease progression.
  • Research found that cells from Friedreich ataxia patients are more sensitive to oxidative stress due to a malfunction in the Nrf2 signaling pathway, affecting their ability to produce antioxidant enzymes.
  • The disruption in iron metabolism within mitochondria results in increased hydrogen peroxide, heightening vulnerability to oxidative damage in these patients.
View Article and Find Full Text PDF

Dyggve-Melchior-Clausen dysplasia (DMC) is a rare inherited dwarfism with severe mental retardation due to mutations in the DYM gene which encodes Dymeclin, a 669-amino acid protein of yet unknown function. Despite a high conservation across species and several predicted transmembrane domains, Dymeclin could not be ascribed to any family of proteins. Here we show, using in situ hybridization, that DYM is widely expressed in human embryos, especially in the cortex, the hippocampus and the cerebellum.

View Article and Find Full Text PDF

Background: Friedreich ataxia is a neurological disease originating from an iron-sulfur cluster enzyme deficiency due to impaired iron handling in the mitochondrion, aconitase being particularly affected. As a mean to counteract disease progression, it has been suggested to chelate free mitochondrial iron. Recent years have witnessed a renewed interest in this strategy because of availability of deferiprone, a chelator preferentially targeting mitochondrial iron.

View Article and Find Full Text PDF

An efficient handling of superoxides by antioxidant defenses is a crucial issue for cells with respiratory chain deficient mitochondria. We used human cultured skin fibroblasts to delineate the mechanism controlling the expression of antioxidant defenses in the case of a severe ATPase deficiency resulting from an 8993T>G mutation in the mitochondrial ATPase6 gene. We observed the nuclear translocation of the transcription factor Nrf2 associated with thinning of the actin stress fibers.

View Article and Find Full Text PDF
Article Synopsis
  • Dyggve-Melchior-Clausen syndrome (DMC) and Smith-McCort dysplasia (SMC) are rare genetic disorders affecting bone development, linked to mutations in the DYM gene on chromosome 18.
  • DMC typically results from loss-of-function mutations leading to more severe skeletal issues, while SMC is associated with milder missense mutations that may retain some DYM activity.
  • A study of three consanguineous families revealed specific mutations in DMC, but no mutations were found in one SMC family, indicating potential genetic differences within these disorders.
View Article and Find Full Text PDF

Dyggve-Melchior-Clausen (DMC) is a rare autosomal-recessive disorder characterized by the association of a progressive spondylo-epi-metaphyseal dysplasia and mental retardation ranging from mild to severe. Electron microscopy studies of both DMC chondrocytes and fibroblasts reveal an enlarged endoplasmic reticulum network and a large number of intracytoplasmic membranous vesicles, suggesting that DMC syndrome may be a storage disorder. Indeed, DMC phenotype is often compared to that of type IV mucopolysaccharidosis (Morquio disease), a lysosomal disorder due to either N-acetylgalactosamine-6-sulphatase or beta-galactosidase deficiency.

View Article and Find Full Text PDF