Publications by authors named "Vincent Pai"

Article Synopsis
  • Vitamin B12 is essential for blood cell formation and nerve insulation, and its deficiency can lead to neurological issues despite normal blood levels, as seen in a patient with symptoms like tremor and cognitive decline.
  • Researchers discovered an autoantibody against the transcobalamin receptor (CD320) that hinders vitamin B12 uptake in the brain, resulting in low levels found in cerebrospinal fluid even when blood levels appear normal.
  • The study suggests this autoimmune condition can be treated with immunosuppressive therapy and high-dose vitamin B12, and highlights the importance of recognizing how B12 transport differs in various tissues, which could improve diagnosis and treatment strategies for similar neurological disorders.
View Article and Find Full Text PDF

In the published version of this paper the author Shu-Pin Huang's surname was incorrectly given as Hwang instead of Huang. This has now been corrected in the HTML and PDF versions of the paper.

View Article and Find Full Text PDF

Recurrent and hormone-refractory prostate cancer (PCA) exhibits aggressive behaviors while current therapeutic approaches show little effect of prolonging the survival of patients with PCA. Thus, a deeper understanding of the patho-molecular mechanisms underlying the disease progression in PCA is crucial to identify novel diagnostic and/or therapeutic targets to improve the outcome of patients. Recent evidence suggests that activation of Wnt signaling in cancer stem cells (CSCs) contributes to cancer progression in malignant tumors.

View Article and Find Full Text PDF

Background: Thrombomodulin (TM), a transmembrane glycoprotein highly expressed in endothelial cells (ECs), is a potent anticoagulant maintaining circulation homeostasis. Under inflammatory states, TM expression is drastically reduced in ECs while vascular smooth muscle cells (VSMCs) show a robust expression of TM. The functional role of TM in VSMCs remains elusive.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are a treasure trove of information regarding the location, type and stage of cancer and are being pursued as both a diagnostic target and a means of guiding personalized treatment. Most isolation technologies utilize properties of the CTCs themselves such as surface antigens (e.g.

View Article and Find Full Text PDF

Although traditional chemotherapy kills a fraction of tumor cells, it also activates the stroma and can promote the growth and survival of residual cancer cells to foster tumor recurrence and metastasis. Accordingly, overcoming the host response induced by chemotherapy could substantially improve therapeutic outcome and patient survival. In this study, resistance to treatment and metastasis has been attributed to expansion of stem-like tumor-initiating cells (TICs).

View Article and Find Full Text PDF

Matrix stiffness potently regulates cellular behaviour in various biological contexts. In breast tumours, the presence of dense clusters of collagen fibrils indicates increased matrix stiffness and correlates with poor survival. It is unclear how mechanical inputs are transduced into transcriptional outputs to drive tumour progression.

View Article and Find Full Text PDF

The ability to isolate and analyze rare circulating tumor cells (CTCs) has the potential to further our understanding of cancer metastasis and enhance the care of cancer patients. In this protocol, we describe the procedure for isolating rare CTCs from blood samples by using tumor antigen-independent microfluidic CTC-iChip technology. The CTC-iChip uses deterministic lateral displacement, inertial focusing and magnetophoresis to sort up to 10⁷ cells/s.

View Article and Find Full Text PDF

Mechanical strain is an important signal that influences the behavior and properties of cells in a wide variety of tissues. Physiologically similar mechanical strain can revert cultured cells to a more normal phenotype. Here, we have demonstrated that 3% equibiaxial (EB) and uniaxial strains confer favorable protein expression in cultured rabbit corneal fibroblasts (RCFs), with approximately 35% and 65% reduction in expression of α-smooth muscle actin (α-SMA), respectively.

View Article and Find Full Text PDF