Tyrosine kinase inhibitors represent a class of targeted therapy that has proven to be successful for cancer treatment. Linifanib is a novel, orally active multi-targeted receptor tyrosine kinase (RTK) inhibitor that exhibits potent antitumor and antiangiogenic activities against a broad spectrum of experimental tumors and malignancies in patients. The compound is currently being evaluated in phase 2 and 3 clinical trials.
View Article and Find Full Text PDFWith 90% of neuroscience clinical trials failing to see efficacy, there is a clear need for the development of disease biomarkers that can improve the ability to predict human Alzheimer's disease (AD) trial outcomes from animal studies. Several lines of evidence, including genetic susceptibility and disease studies, suggest the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) as a potential biomarker with congruency between humans and animal models. For example, early in AD, patients present with decreased glucose metabolism in the entorhinal cortex and several regions of the brain associated with disease pathology and cognitive decline.
View Article and Find Full Text PDFABT-751 is an orally bioavailable tubulin-binding agent that is currently under clinical development for cancer treatment. In preclinical studies, ABT-751 showed antitumor activity against a broad spectrum of tumor lines including those resistant to conventional chemotherapies. In this study, we investigated the antivascular properties of ABT-751 in a rat subcutaneous tumor model using dynamic contrast-enhanced magnetic resonance imaging.
View Article and Find Full Text PDFUSPIO-enhanced MRI allows non-invasive visualization of mononuclear cell infiltration into CNS lesions in MS and EAE. Herein, we show a distinct spatiotemporal pattern of CNS lesions that reveals the involvement of spino-olivocerebellar pathways in MOG-induced EAE rats using USPIO-enhanced MRI. Specifically, lesions of the inferior olives were observed primarily in the acute phase whereas lesions of cerebellum or spinal cord/brainstem were observed during the relapse phase.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
January 2009
Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity.
View Article and Find Full Text PDFNeuronal nicotinic receptors are the subject of intensive research focused on developing novel therapies for drug abuse, neurocognitive disorders, neurodegenerative diseases, and pain. In this study, we have applied pharmacological magnetic resonance imaging (phMRI) in awake rats to map functional brain responses to the selective alpha(4)beta(2) nicotinic receptor agonists, A-85380, and ABT-594. Moreover, we have validated our methods by comparison with autoradiography using [(3)H]-A-85380 and [(3)H]-ABT-594.
View Article and Find Full Text PDFDrug-induced vomiting (emesis) is a major concern in patient care and a significant hurdle in the development of novel therapeutics. With respect to the latter, rodents, such as the rat and mouse, are typically used in efficacy and safety studies; however, drug-induced emesis cannot be readily observed in these species due to the lack of an emetic reflex. It is known that emesis can be triggered by neural activity in brain regions including area postrema (AP) and nucleus tractus solitarius (NTS).
View Article and Find Full Text PDFPurpose: To evaluate the feasibility of using dynamic contrast-enhanced magnetic resonance imaging (MRI) for assessment of muscle perfusion in a rat model of hind-limb ischemia.
Materials And Methods: The acute alteration and chronic recovery in muscle perfusion and perfusion reserve after femoral artery ligation were quantified using the maximum Gd-DTPA uptake rate obtained by a T(1)-weighted gradient-recalled echo sequence. Radionuclide-labeled microsphere blood flow measurements were performed for comparison with the MR perfusion measurement on a separate set of animals.