Comp Biochem Physiol Part D Genomics Proteomics
December 2024
Metabolic pathways are affected by the impacts of environmental contaminants underlying a large variability of toxic effects across different species. However, the systematic reconstruction of metabolic pathways remains limited in environmental sentinel species due to the lack of available genomic data in many taxa of animal diversity. In this study we used a multi-omics approach to reconstruct the most comprehensive map of metabolic pathways for a crustacean model in biomonitoring, the amphipod Gammarus fossarum in order to improve the knowledge of the metabolism of this sentinel species.
View Article and Find Full Text PDFLarge dsDNA viruses from the class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs.
View Article and Find Full Text PDFWe present a drug design strategy based on structural knowledge of protein-protein interfaces selected through virus-host coevolution and translated into highly potential small molecules. This approach is grounded on Vinland, the most comprehensive atlas of virus-human protein-protein interactions with annotation of interacting domains. From this inspiration, we identified small viral protein domains responsible for interaction with human proteins.
View Article and Find Full Text PDFCells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms.
View Article and Find Full Text PDFThe coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces.
View Article and Find Full Text PDFDuring annual influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs), can become predominant and cause severe morbidity and mortality. Phylogenetic analyses suggest that IAVs (primarily avian viruses) and IBVs (primarily human viruses) have diverged over long time scales. Identifying their common and distinctive features is an effective approach to increase knowledge about the molecular details of influenza infection.
View Article and Find Full Text PDFArtificial light at night (ALAN) affects numerous physiological and behavioural mechanisms in various species by potentially disturbing circadian timekeeping systems and modifying melatonin levels. However, given the multiple direct and indirect effects of ALAN on organisms, large-scale transcriptomic approaches are essential to assess the global effect of ALAN on biological processes. Moreover, although studies have focused mainly on variations in gene expression during the night in the presence of ALAN, it is necessary to investigate the effect of ALAN on gene expression during the day.
View Article and Find Full Text PDFViral metagenomics next-generation sequencing (mNGS) is increasingly being used to characterize the human virome. The impact of viral nucleic extraction on virome profiling has been poorly studied. Here, we aimed to compare the sensitivity and sample and reagent contamination of three extraction methods used for viral mNGS: two automated platforms (eMAG; MagNA Pure 24, MP24) and the manual QIAamp Viral RNA Mini Kit (QIAamp).
View Article and Find Full Text PDFAlteration of host cell splicing is a common feature of many viral infections which is underappreciated because of the complexity and technical difficulty of studying alternative splicing (AS) regulation. Recent advances in RNA sequencing technologies revealed that up to several hundreds of host genes can show altered mRNA splicing upon viral infection. The observed changes in AS events can be either a direct consequence of viral manipulation of the host splicing machinery or result indirectly from the virus-induced innate immune response or cellular damage.
View Article and Find Full Text PDFBCL-2 proteins correspond to a structurally, functionally, and phylogenetically heterogeneous group of regulators that play crucial roles in the life and death of animal cells. Some of these regulators also represent therapeutic targets in human diseases including cancer. In the omics era, there is great need for easy data retrieval and fast analysis of the molecular players involved in cell death.
View Article and Find Full Text PDFBackground: Enterohemorrhagic Escherichia coli (EHEC) are zoonotic agents associated with outbreaks worldwide. Growth of EHEC strains in ground beef could be inhibited by background microbiota that is present initially at levels greater than that of the pathogen E. coli.
View Article and Find Full Text PDFBackground: The capacity of Aedes mosquitoes to resist chemical insecticides threatens the control of major arbovirus diseases worldwide. Until alternative control tools are widely deployed, monitoring insecticide resistance levels and identifying resistance mechanisms in field mosquito populations is crucial for implementing appropriate management strategies. Metabolic resistance to pyrethroids is common in Aedes aegypti but the monitoring of the dynamics of resistant alleles is impeded by the lack of robust genomic markers.
View Article and Find Full Text PDFMyotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A.
View Article and Find Full Text PDFNucleolin (NCL) is a major component of the cell nucleolus, which has the ability to rapidly shuttle to several other cells' compartments. NCL plays important roles in a variety of essential functions, among which are ribosome biogenesis, gene expression, and cell growth. However, the precise mechanisms underlying NCL functions are still unclear.
View Article and Find Full Text PDFThe capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping.
View Article and Find Full Text PDFThe number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target.
View Article and Find Full Text PDFWorldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed.
View Article and Find Full Text PDFNucleic Acids Res
January 2015
VirHostNet release 2.0 (http://virhostnet.prabi.
View Article and Find Full Text PDFBackground: Despite the intensive use of Bacillus thuringiensis israelensis (Bti) toxins for mosquito control, little is known about the long term effect of exposure to this cocktail of toxins on target mosquito populations. In contrast to the many cases of resistance to Bacillus thuringiensis Cry toxins observed in other insects, there is no evidence so far for Bti resistance evolution in field mosquito populations. High fitness costs measured in a Bti selected mosquito laboratory strain suggest that evolving resistance to Bti is costly.
View Article and Find Full Text PDFBackground: Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood.
View Article and Find Full Text PDFVirus-host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data.
View Article and Find Full Text PDF