Publications by authors named "Vincent Moxley-Paquette"

The excellent versatility of 5-axis computer numerical control (CNC) micromilling has led to its application for prototyping NMR microcoils tailored to mass-limited samples (reducing development time and cost). However, vibrations during 5-axis milling can hinder the creation of complex 3D volume microcoils (i.e.

View Article and Find Full Text PDF

In vivo NMR is evolving into an important tool to understand biological processes and environmental responses. Current approaches use flow systems to sustain the organisms with oxygenated water and food (e.g.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) based C tracing has broad applications across medical and environmental research. As many biological and environmental samples are heterogeneous, they experience considerable spectral overlap and relatively low signal. Here a 1D H-C/C is introduced that uses "in-phase/opposite-phase" encoding to simultaneously detect and discriminate both protons attached to C and C at full H sensitivity in every scan.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) is a powerful technique with applications ranging from small molecule structure elucidation to metabolomics studies of living organisms. Typically, solution-state NMR requires a homogeneous liquid, and the whole sample is analyzed as a single entity. While adequate for homogeneous samples, such an approach is limited if the composition varies as would be the case in samples that are naturally heterogeneous or layered.

View Article and Find Full Text PDF

In environmental research, it is critical to understand how toxins impact invertebrate eggs and egg banks, which, due to their tiny size, are very challenging to study by conventional nuclear magnetic resonance (NMR) spectroscopy. Microcoil technology has been extensively utilized to enhance the mass-sensitivity of NMR. In a previous study, 5-axis computer numerical control (CNC) micromilling (shown to be a viable alternative to traditional microcoil production methods) was used to create a prototype copper slotted-tube resonator (STR).

View Article and Find Full Text PDF

With sensitivity being the Achilles' heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research.

View Article and Find Full Text PDF

Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF).

View Article and Find Full Text PDF

Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences.

View Article and Find Full Text PDF

The superior mass sensitivity of microcoil technology in nuclear magnetic resonance (NMR) spectroscopy provides potential for the analysis of extremely small-mass-limited samples such as eggs, cells, and tiny organisms. For optimal performance and efficiency, the size of the microcoil should be tailored to the size of the mass-limited sample of interest, which can be costly as mass-limited samples come in many shapes and sizes. Therefore, rapid and economic microcoil production methods are needed.

View Article and Find Full Text PDF

The transient receptor potential (TRP) family is a large family of widely expressed ion channels that regulate the intracellular concentration of ions and metals and respond to various chemical and physical stimuli. TRP subfamily M member 7 (TRPM7) is unusual in that it contains both an ion channel and a kinase domain. TRPM7 is a divalent cation channel with preference for Ca and Mg It is required for the survival of DT40 cells, a B cell line; however, deletion of TRPM7 in T cells does not impair their development.

View Article and Find Full Text PDF