Publications by authors named "Vincent Moulton"

An - is a type of rooted, arc-weighted, directed acyclic graph with leaf set , that is used in biology to represent the evolutionary history of a set  of species. In this paper, we introduce and investigate the space of equidistant -cactuses. This space contains, as a subset, the space of ultrametric trees on that was introduced by Gavryushkin and Drummond.

View Article and Find Full Text PDF

Convergent evolution is an important process in which independent species evolve similar features usually over a long period of time. It occurs with many different species across the tree of life, and is often caused by the fact that species have to adapt to similar environmental niches. In this paper, we introduce and study properties of a distance-based model for convergent evolution in which we assume that two ancestral species converge for a certain period of time within a collection of species that have otherwise evolved according to an evolutionary clock.

View Article and Find Full Text PDF

The of a set of points with respect to a convex body equals the minimum value of such that a translate of contains . Each choice of gives a different function on the set of bounded subsets of ; we characterize which functions can arise in this way. Our characterization draws on the theory of , a recently introduced generalization of metrics from functions on pairs to functions on finite subsets.

View Article and Find Full Text PDF

This article presents metagenome-assembled genomes (MAGs) for both eukaryotic and prokaryotic organisms originating from the Arctic and Atlantic oceans, along with gene prediction and functional annotation for MAGs from both domains. Eleven samples from the chlorophyll-a maximum layer of the surface ocean were collected during two cruises in 2012; six from the Arctic in June-July on ARK-XXVII/1 (PS80), and five from the Atlantic in November on ANT-XXIX/1 (PS81). Sequencing and assembly was carried out by the Joint Genome Institute (JGI), who provide annotation of the assembled sequences, and 122 MAGs for prokaryotic organisms.

View Article and Find Full Text PDF

Ice-binding proteins (IBPs) are a group of ecologically and biotechnologically relevant enzymes produced by psychrophilic organisms. Although putative IBPs containing the domain of unknown function (DUF) 3494 have been identified in many taxa of polar microbes, our knowledge of their genetic and structural diversity in natural microbial communities is limited. Here, we used samples from sea ice and sea water collected in the central Arctic Ocean as part of the MOSAiC expedition for metagenome sequencing and the subsequent analyses of metagenome-assembled genomes (MAGs).

View Article and Find Full Text PDF

Multiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth.

View Article and Find Full Text PDF
Planar Rooted Phylogenetic Networks.

IEEE/ACM Trans Comput Biol Bioinform

April 2023

A rooted phylogenetic network is a directed acyclic graph with a single root, whose sinks correspond to a set of species. As such networks are useful for representing the evolution of species that have undergone reticulate evolution, there has been great interest in developing the theory behind and algorithms for constructing them. However, unlike evolutionary trees, these networks can be highly non-planar, which can make them difficult to visualise and interpret.

View Article and Find Full Text PDF

Background: Phytoplankton communities significantly contribute to global biogeochemical cycles of elements and underpin marine food webs. Although their uncultured genomic diversity has been estimated by planetary-scale metagenome sequencing and subsequent reconstruction of metagenome-assembled genomes (MAGs), this approach has yet to be applied for complex phytoplankton microbiomes from polar and non-polar oceans consisting of microbial eukaryotes and their associated prokaryotes.

Results: Here, we have assembled MAGs from chlorophyll a maximum layers in the surface of the Arctic and Atlantic Oceans enriched for species associations (microbiomes) with a focus on pico- and nanophytoplankton and their associated heterotrophic prokaryotes.

View Article and Find Full Text PDF

Current microRNA (miRNA) prediction methods are generally based on annotation criteria that tend to miss potential functional miRNAs. Recently, new miRNA annotation criteria have been proposed that could lead to improvements in miRNA prediction methods in plants. Here, we investigate the effect of the new criteria on miRNA prediction in Arabidopsis thaliana and present a new degradome assisted functional miRNA prediction approach.

View Article and Find Full Text PDF

Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole.

View Article and Find Full Text PDF

Recently there has been considerable interest in the problem of finding a phylogenetic network with a minimum number of reticulation vertices which displays a given set of phylogenetic trees, that is, a network with minimum hybrid number. Such networks are useful for representing the evolution of species whose genomes have undergone processes such as lateral gene transfer and recombination that cannot be represented appropriately by a phylogenetic tree. Even so, as was recently pointed out in the literature, insisting that a network displays the set of trees can be an overly restrictive assumption when modeling certain evolutionary phenomena such as incomplete lineage sorting.

View Article and Find Full Text PDF

The highly heterogeneous clinical course of human prostate cancer has prompted the development of multiple RNA biomarkers and diagnostic tools to predict outcome for individual patients. Biomarker discovery is often unstable with, for example, small changes in discovery dataset configuration resulting in large alterations in biomarker composition. Our hypothesis, which forms the basis of this current study, is that highly significant overlaps occurring between gene signatures obtained using entirely different approaches indicate genes fundamental for controlling cancer progression.

View Article and Find Full Text PDF
Article Synopsis
  • The classical gene and species tree reconciliation typically assumes that gene families evolve independently, which is valid for distant genes but not for those in syntenic blocks that may evolve together.
  • The study introduces a challenge of deducing the history of segmental duplication and loss for neighboring genes, expanding the traditional Duplication-Loss reconciliation to accommodate multiple gene trees.
  • The research demonstrates that reconstructing a most parsimonious Super-Reconciliation is NP-hard, offers an exponential-time algorithm to solve it, and presents a polynomial-time algorithm for a rearrangement-inclusive model focused on minimizing duplication and loss events.
View Article and Find Full Text PDF

Natural antisense transcript-derived small interfering RNAs (nat-siRNAs) are a class of functional small RNA (sRNA) that have been found in both plant and animals kingdoms. In plants, these sRNAs have been shown to suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced silencing complex (RISC) to their sequence-specific mRNA target(s). Current computational tools for classification of nat-siRNAs are limited in number and can be computationally infeasible to use.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to understand prostate cancer better by using advanced methods to analyze genetic data, instead of just basic methods that overlook important details.
  • They used a special model called Latent Process Decomposition (LPD) to look at data from many prostate cancer patients and found a link between a specific gene signature (DESNT) and the risk of cancer worsening.
  • By discovering different types of prostate cancer based on this gene signature, they hope to improve treatment and help doctors make better decisions for patients.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short, non-coding RNAs that modulate the translation-rate of messenger RNAs (mRNAs) by directing the RNA-induced silencing complex to sequence-specific targets. In plants, this typically results in cleavage and subsequent degradation of the mRNA. Degradome sequencing is a high-throughput technique developed to capture cleaved mRNA fragments and thus can be used to support miRNA target prediction.

View Article and Find Full Text PDF

Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known for more than 100 years as a process by which the biogeochemical N-cycle is balanced. To study this process, we develop an individual-based model called INDISIM-Denitrification.

View Article and Find Full Text PDF

Phylogenomics commonly aims to construct evolutionary trees from genomic sequence information. One way to approach this problem is to first estimate event-labeled gene trees (i.e.

View Article and Find Full Text PDF

Network reconstruction lies at the heart of phylogenetic research. Two well-studied classes of phylogenetic networks include tree-child networks and level-k networks. In a tree-child network, every non-leaf node has a child that is a tree node or a leaf.

View Article and Find Full Text PDF

Introgression is an evolutionary process which provides an important source of innovation for evolution. Although various methods have been used to detect introgression, very few methods are currently available for constructing evolutionary histories involving introgression. In this article, we propose a new method for constructing such evolutionary histories whose starting point is a species forest (consisting of a collection of lineage trees, usually arising as a collection of clades or monophyletic groups in a species tree), and a gene tree for a specific allele of interest, or allele tree for short.

View Article and Find Full Text PDF

Tree reconciliation is the mathematical tool that is used to investigate the coevolution of organisms, such as hosts and parasites. A common approach to tree reconciliation involves specifying a model that assigns costs to certain events, such as cospeciation, and then tries to find a mapping between two specified phylogenetic trees which minimizes the total cost of the implied events. For such models, it has been shown that there may be a huge number of optimal solutions, or at least solutions that are close to optimal.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are short, non-coding RNAs that play critical roles in many important biological pathways. They suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced silencing complex to their sequence-specific mRNA target(s). In plants, this typically results in mRNA cleavage and subsequent degradation of the mRNA.

View Article and Find Full Text PDF

An important problem in phylogenetics is the construction of phylogenetic trees. One way to approach this problem, known as the supertree method, involves inferring a phylogenetic tree with leaves consisting of a set X of species from a collection of trees, each having leaf-set some subset of X. In the 1980s, Colonius and Schulze gave certain inference rules for deciding when a collection of 4-leaved trees, one for each 4-element subset of X, can be simultaneously displayed by a single supertree with leaf-set X.

View Article and Find Full Text PDF

Motivation: RNA interference, a highly conserved regulatory mechanism, is mediated via small RNAs (sRNA). Recent technical advances enabled the analysis of larger, complex datasets and the investigation of microRNAs and the less known small interfering RNAs. However, the size and intricacy of current data requires a comprehensive set of tools, able to discriminate the patterns from the low-level, noise-like, variation; numerous and varied suggestions from the community represent an invaluable source of ideas for future tools, the ability of the community to contribute to this software is essential.

View Article and Find Full Text PDF

Given a collection [Formula: see text] of subsets of a finite set X, we say that [Formula: see text] is phylogenetically flexible if, for any collection R of rooted phylogenetic trees whose leaf sets comprise the collection [Formula: see text], R is compatible (i.e. there is a rooted phylogenetic X-tree that displays each tree in R).

View Article and Find Full Text PDF