Beryllium has been considered a potential alternative to magnesium as a p-type dopant in GaN, but attempts to produce conductive p-GaN:Be have not been successful. Photoluminescence studies have repeatedly shown Be to have an acceptor level shallower than that of Mg, but deep Be defects and other compensating defects render most GaN:Be materials n-type or semi-insulating at best. Previous reports use molecular beam epitaxy or ion implantation to dope GaN with Be, almost exclusively.
View Article and Find Full Text PDFWe report on the enhanced incorporation efficiency of magnesium dopants into facets of hexagonal hillock structures in N-polar GaN, studied by comparative analysis of GaN:Mg films grown by MOCVD on high and low hillock density GaN template layers. Total magnesium concentration in planar regions surrounding a hillock structure is comparable to that within hillock sidewall facets measured at 1.3 × 10 cm by atom probe tomography, and clustering of Mg atoms is seen in all regions of the film.
View Article and Find Full Text PDFThe electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.
View Article and Find Full Text PDF