Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2015
Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe(3+) to activate O2 and catecholic substrates for reaction. The inability of Fe(3+) to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol.
View Article and Find Full Text PDF(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) incorporates both atoms of molecular oxygen into 4-hydroxyphenylpyruvate (HPP) to form homogentisate (HG). This reaction has direct relevance in both medicine and agriculture. In humans, the specific inhibition of HPPD alleviates the symptoms of diseases that arise from tyrosine catabolism defects.
View Article and Find Full Text PDF(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation in a single catalytic cycle. HPPD is a unique member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate or oxidize an organic molecule.
View Article and Find Full Text PDF(4-hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the second step in the pathway for the catabolism of tyrosine, the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation. HPPD is a member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate an organic molecule.
View Article and Find Full Text PDF