Publications by authors named "Vincent Laude"

Impedance metasurfaces enable accurate regulation of acoustic fields. However, they can hardly supply a flexible response as such perfect operation is accompanied by stringent requirements on the design of unit cells. Actually, an arbitrary lossless and passive target impedance matrix requires the tuning of 3 independent real parameters.

View Article and Find Full Text PDF

Non-Newtonian liquids are characterized by stress and velocity-dependent dynamical response. In elasticity, and in particular, in the field of phononics, reciprocity in the equations acts against obtaining a directional response for passive media. Active stimuli-responsive materials have been conceived to overcome it.

View Article and Find Full Text PDF

The ability to significantly change the mechanical and wave propagation properties of a structure without rebuilding it is currently one of the main challenges in the field of mechanical metamaterials. This stems from the enormous appeal that such tunable behavior may offer from the perspective of applications ranging from biomedical to protective devices, particularly in the case of micro-scale systems. In this work, a novel micro-scale mechanical metamaterial is proposed that can undergo a transition from one type of configuration to another, with one configuration having a very negative Poisson's ratio, corresponding to strong auxeticity, and the other having a highly positive Poisson's ratio.

View Article and Find Full Text PDF

This broad review summarizes recent advances and "hot" research topics in nanophononics and elastic, acoustic, and mechanical metamaterials based on results presented by the authors at the EUROMECH 610 Colloquium held on April 25-27, 2022 in Benicássim, Spain. The key goal of the colloquium was to highlight important developments in these areas, particularly new results that emerged during the last two years. This work thus presents a "snapshot" of the state-of-the-art of different nanophononics- and metamaterial-related topics rather than a historical view on these subjects, in contrast to a conventional review article.

View Article and Find Full Text PDF

In solid state physics, phase transitions can influence material functionality and alter their properties. In mechanical metamaterials, structural-phase transitions can be achieved through instability or buckling of certain structural elements. However, these fast transitions in one mechanical parameter typically affect significantly the remaining parameters, hence, limiting their applications.

View Article and Find Full Text PDF

Three-dimensional direct laser writing technology enables one to print polymer microstructures whose size varies from a few hundred nanometers to a few millimeters. It has been shown that, by tuning the laser power during writing, one can adjust continuously the optical and elastic properties with the same base material. This process is referred to as gray-tone lithography.

View Article and Find Full Text PDF
Article Synopsis
  • Stepper motors and actuators are crucial components in control motion devices, characterized by their complex assembly and large size due to multifunctionality.
  • This paper presents a new single-step lithography method to create a micro-stepper engine that achieves precise micrometric rotation and is smaller than a millimeter.
  • The device uses frictional contacts and chiral metamaterials to minimize reliance on part accuracy, and its performance is evaluated over multiple rotation cycles and varying frictional surfaces.
View Article and Find Full Text PDF

Previously, rotons were observed in correlated quantum systems at low temperatures, including superfluid helium and Bose-Einstein condensates. Here, following a recent theoretical proposal, we report the direct experimental observation of roton-like dispersion relations in two different three-dimensional metamaterials under ambient conditions. One experiment uses transverse elastic waves in microscale metamaterials at ultrasound frequencies.

View Article and Find Full Text PDF

Manipulation of mechanical motion at the micro-scale has been attracting continuous attention, leading to the successful implementation of various strategies with potential impact on classical and quantum information processing. We propose an approach based on the interplay between a pair of localised mechanical resonators and travelling surface acoustic waves (SAW). We demonstrate the existence of a two-sided interaction, allowing the use of SAW to trigger and control the resonator oscillation, and to manipulate the elastic energy distribution on the substrate through resonator coupling.

View Article and Find Full Text PDF

We model the generation of coherent acoustic beams in a homogeneous solid from the interference of two oppositely propagating, detuned optical laser beams. This configuration is reciprocal to Brillouin light scattering in the backward interaction arrangement. Generation of a confined ultrasound beam is predicted, close to the Brillouin frequency.

View Article and Find Full Text PDF

The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement.

View Article and Find Full Text PDF

We report, to the best of our knowledge, the first experimental observation of surface Brillouin scattering in silica-based photonic crystal fibers, arising from the interaction between guided light and surface acoustic waves. This was achieved using small-core and high air-filling fraction microstructured fibers that enable a strong opto-acoustic coupling near the air holes while mitigating the acoustic leakages in the microstructured cladding. It is further shown that this new type of light scattering is highly sensitive to the fiber air-hole microstructure, thus providing a passive and efficient way to control it.

View Article and Find Full Text PDF

Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves.

View Article and Find Full Text PDF

We study simultaneous photonic and phononic crystal slabs created in Z-cut lithium niobate membranes. Bandgaps for guided waves are identified using the three-dimensional finite element method (FEM). Three lattices are considered: the square, the hexagonal, and the honeycomb lattices.

View Article and Find Full Text PDF

We investigate the onset of nonlinear effects in hybrid polymer-chalcogenide optical microwires and show that they provide an enhanced Kerr nonlinearity while simultaneously mitigating stimulated Brillouin scattering as compared to both chalcogenide and silica optical fibers. It is shown in particular that the polymer cladding surrounding the microwire significantly broadens the Brillouin linewidth and increases the threshold, thus enabling Kerr nonlinear applications. We also study the influence of the wire diameter on the Brillouin dynamics and demonstrate that the Brillouin frequency shift can be finely tuned over a wide radio-frequency range.

View Article and Find Full Text PDF

We demonstrate theoretically that photons and acoustic phonons can be simultaneously guided and slowed down in specially designed nanostructures. Phoxonic crystal waveguides presenting simultaneous phononic and photonic band gaps were designed in perforated silicon membranes that can be conveniently obtained using silicon-on-insulator technology. Geometrical parameters for simultaneous photonic and phononic band gaps were first chosen for optical wavelengths around 1550 nm, based on the finite element analysis of a perfect phoxonic crystal of circular holes.

View Article and Find Full Text PDF

Interface acoustic waves (IAWs) propagate along the boundary between two perfectly bonded solids. For a leakage- free IAW, all displacement fields must be evanescent along the normal to the boundary inside both solids, but leaky IAWs may also exist depending on the selected combination of materials. When at least one of the bonded solids is a piezoelectric material, the IAW can be excited by an interdigital transducer (IDT) located at the interface, provided one can fabricate the transducer and access the electrical contacts.

View Article and Find Full Text PDF

We discuss the computation of the band structure of plate waves using the plane wave expansion (PWE) method. This method is generally used to formulate eigenvalue problems to compute dispersion diagrams for solid-solid phononic crystals. We show how the free surface boundary condition can be included implicitly in the form of the PWE solution, thus leading to an efficient eigenvalue problem.

View Article and Find Full Text PDF

In this work, the singular behavior of charges at corners and edges on the metallized areas in SAW transducers are investigated. In particular, it is demonstrated that a tensor product of the commonly used Tchebychev bases overestimates the singularities at corners, and, hence, it cannot be used in a proper boundary element method formulation. On the other hand, it is shown that a simple finite element method-like approach is impractical due to the enormous number of unknowns required to model the electrode's large length-to-width ratio.

View Article and Find Full Text PDF

The propagation of acoustic waves in a square-lattice phononic crystal slab consisting of a single layer of spherical steel beads in a solid epoxy matrix is studied experimentally. Waves are excited by an ultrasonic transducer and fully characterized on the slab surface by laser interferometry. A complete band gap is found to extend around 300 kHz, in good agreement with theoretical predictions.

View Article and Find Full Text PDF

The need for high-frequency, wide-band filters has instigated many developments based on combining thin piezoelectric films and high acoustic velocity materials (sapphire, diamond-like carbon, silicon, etc.) to ease the manufacture of devices operating above 2 GHz. In the present work, a technological process has been developed to achieve thin-oriented, single-crystal lithium niobate (LiNbO3) layers deposited on (100) silicon wafers for the fabrication of radio-frequency (RF) surface acoustic wave (SAW) devices.

View Article and Find Full Text PDF

We experimentally investigate guided acoustic wave Brillouin scattering in several photonic crystal fibers by use of the so-called fiber loop mirror technique and show a completely different dynamics with respect to standard all-silica fibers. In addition to the suppression of most acoustic phonons, we show that forward Brillouin scattering in photonic crystal fibers is substantially enhanced only for the fundamental acoustic phonon because of efficient transverse acousto-optic field overlap. The results of our numerical simulations reveal that this high-frequency phonon is indeed trapped within the fiber core by the air-hole microstructure, in good agreement with experimental measurements.

View Article and Find Full Text PDF

The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.

View Article and Find Full Text PDF

The equality of the energy and group velocities of bulk acoustic waves in a lossless piezoelectric medium is demonstrated, with the energy velocity defined from the generalized energy density and the generalized Poynting vector.

View Article and Find Full Text PDF

In the race toward attosecond pulses, for which high-order harmonics generated in rare gases are the best candidates, both the harmonic spectral range and the spectral phase have to be controlled. We demonstrate that multilayer extreme-ultraviolet chirped mirrors can be numerically optimized and designed to compensate for the intrinsic harmonic chirp that was recently discovered and that is responsible for temporal broadening of pulses. A simulation shows that an optimized mirror is capable of compressing the duration from approximately 260 to 90 as.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionanpu3b2oundvvr6gqsghcocebga2pdbb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once